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Geometrical Aspects of Skyrmions, Reflection
Group, and the Internal Symmetry of Hadrons
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The topological aspects of skyrmions are studied and it is shown that hadrons
can be viewed as composite states of baby skyrmions when the internal symmetry
U(3) is generated from reflection. It is shown that in an anisotropic space a
particle can move with | = 1/2 with a specific I, value, and a bosonic constituent
moving with | = 1/2 will appear as a baby skyrmion and a fermionic constituent
will appear as if a spin carrier is attached to a baby skyrmion. The associated
magnetic field causes astrong statistical attraction which helps to form the bound
state of such constituents. The doublet of such particles having opposite I, values
form a conformal spinor when each member behaves as a Cartan semispinor.
The conformal reflection then helps us to generate the internal SU(3) symmetry,
which splits as SU(3) - SU(2) X U(1), giving rise to the hadronic spectra. The
strong interaction involves a composite cluster in such a bound system when
rearrangement of the constituents takes place preserving the direction vectors,
and an elementary constituent can take part in aweak interaction, causing parity
violation. These features help us to consider elementary constituents as known
particles like leptons.

1. INTRODUCTION

The idea of the topological origin of the baryon number proposed by
Skyrme [1] and Finkelstein and Rubinstein [2] has been revived. These
authors put forward the idea that conserved quantum numbers arise as a
consequence of the topological properties of hadrons and that particles which
carry conserved quantum numbersare built up from classical fields of nontriv-
ial topology. In this picture, baryons appear as solitons, commonly known
as skyrmions. In arecent paper [3], it has been shown that the Skyrme term,
which is a sguare term of the commutator and is necessary for the stability
of a soliton, may appear as a consequence of the anisotropic feature of the
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internal space-time suchthat a“direction vector’ isattached to each space-time
point, and this property of internal space-time helps us to have a consistent
guantization of a Fermi field. In this scheme, all massive fermions appear
assolitonsand the Skyrmeterm may be considered as an effect of quantization.
However, the Skyrmeterm does not manifestly expresstheinternal anisotropy
asit isinvariant under P and T. So to incorporate this anisotropic feature in
the Lagrangian, we should add the Wess—Zumino term, which is a five-
dimensiona integral having a boundary denoting our physical space-time.
Witten [4] has shown that the constant appearing in the Wess—Zumino action
has to be an integer for the existence of a consistent quantum description,
which is analogous to the Dirac quantization of a product of eectric and
magnetic charges.

The quantization procedure of a fermion suggests that we should take
into account an anisotropic feature in the microlocal space-time where a
‘direction vector’ &, is attached to the space-time point x,, and this gives
rise to an internal helicity corresponding to the fermion number [3]. The
introduction of this *direction vector’ can be transcribed in terms of spinorial
variables attached to space-time points which giveriseto a SL(2, C) gauge-
theoretic description of the fermion, which is described by a nonlinear o-
model with a Wess—Zumino term. The SL(2, C) gauge fields give rise to the
Pontryagin index, which appears as a magnetic charge and is responsible for
the topological origin of fermion number. This gauge field current associates
a magnetic field which gives rise to a strong attractive interaction in a
composite system analogous to the effect of the Chern—Simons term in a (2
+ |)-dimensional system. Indeed, the anisotropic feature of the internal space
helps us to modify the angular momentum in the same way as a magnetic
monopole changes the angular momentum of a charged particle, and this
shift in angular momentum causes a shift in statistics. In fact, in such a
coordinate system a particle can move with | = 1/2 with a specific I, value,
and abosonic constituent moving with | = 1/2 will appear as ababy skyrmion
and a fermionic constituent will appear as if a spin carrier is attached to a
baby skyrmion. The associated magnetic field causes a strong statistical
attraction which helps to form the bound state of such constituents. The
doublet of such particles having opposite |, values form a conformal spinor
when each member behaves as a Cartan semispinor. The two members of
the doublet correspond to particle and antiparticle states in Minkowski space
representing baby skyrmion and antiskyrmion. The conformal reflection then
helps us to generate the internal symmetry SU(3), which splits as SU(3) -
V(2) X U(1), giving rise to the hadronic spectra. Thus we can have a
geometrical origin of the internal SU(3) symmetry of hadrons when these
are depicted as composite systems where the elementry constituents are bound
by a strong statistical attraction caused by the associated magnetic field. This
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then helps us to consider the elementary constituents of hadrons as known
particles like leptons.

In Section 2 we describe the topological aspects of a skyrmion and the
geometrical setup for a composite system formed by statistical interaction.
In Section 3 we discuss the geometrical origin of SU(3) symmetry from the
reflection group. Section 4 sketches a possible configuration scheme of
hadrons based on this formalism and Section 5 considers the static properties
of baryons. In Section 6 we discuss hadronic interactions and various selec-
tion rules.

2. TOPOLOGICAL ASPECTS OF A SKYRMION, COMPOSITE
SYSTEM, AND STATISTICAL INTERACTION

In an earlier paper [3] we showed that the quantization of a Fermi field
is achieved when an anisotropy in the internal space is introduced so that it
givesrise to two helicities of opposite orientations corresponding to fermion
and antifermion. To have quantization in Minkowski space, we have to take
into account a complex manifold where the coordinate is given by z* = x*
+ i&*, where & is the four-vector in the internal space [5]. The anisotropic
feature of this &-space helps us to consider it as an attached ‘ direction vector’
to the space-time point x,, so that thetwo opposite orientations of the' direction
vector’ give rise to fermion and antifermion. This helps us to have a gauge-
theoretic extension of a relativistic quantum particle when the gauge group
is given by SL.(2, C). This inherent gauge structure seems to be the major
ingredient of the quantization procedure.

In the case of a massive spinor we can choose the chira coordinate as

2 = X+ o N 1)

where we identify the coordinate in the complex manifold z* = x* + &+
with & =1\~ (a = 1, 2), 6 being a two-component spinor. We now
replace the chiral coordinates by the matrices

PN = M 4 12)\{:’*’9(* )

where
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and
MY e 9(2,C)
With these relations, the twistor equation is now modified as [6]
Z,Z% + N0 Ty = 0 (3)

where Ta(a) iS the spinorial variable corresponding to the four-momentum
variable p*, the conjugate of x*, and is given by the matrix representation

P = AT )

and Z* = (of, ma), Zs = (Ta, ") With 0* = i(X™ + LNA0%)ma. Now
Eg. (3) involves the helicity operator

S= _)\QA,BOLEA']TA' (5)

which we identify as the internal helicity and corresponds to the fermion
number. It may be noted that we have taken the matrix representation of p,,
the conjugate of x, in the complex coordinate z, = x, + i§,, as p™ =
wAmA, implying p2 = 0, and so the particle will have mass due to the
nonvanishing character of the quantity £2. It is observed that the complex
conjugate of the chiral coordinate given by (2) will give rise to a massive
particle with interna helicity of opposite orientation corresponding to an
antifermion. In the null plane where £2 = 0, we can write the chiral coordi-
nate as

M = XM+ |—2§A6A' (6)

where the coordinate £ is replaced by £*4 = 16%6”". In this case the helicity
operator is given by

S= _GABA,EA”ITA' = —¢¢ (7)
where ¢ = i0" wp and 8 = —i0~Wa. Shirafuji [7] noted that the state with
the helicity +1/2 is the vacuum state of the fermion operator

gls=+12)=0 (8)

Similarly the state with helicity —1/2 is the vacuum state of the fermion
operator

Fs=-12) =0 9)

From this analysis, it is noted that we can define a plane D~ where for the
coordinate z, = x, + i€, £, belongs to the interior of the forward light cone
¢ >> 0 and as such represents the upper half-plane with the condition det



Geometrical Aspects of Skyrmions 2671

& > 0 and $Tr§ > 0. The lower haf-plane D* is given by the set of all
coordinates z, with &, in the interior of the backward light cone. The map
Z - Z* sendsthe upper half-plane to the lower half-plane. The space M of the
null plane (det £ = 0) isthe Shilov boundary, so that afunction holomorphicin
D~ (DY) is determined by its boundary values. Thus if we consider that any
function ¢(2) = $(X) + id(§) is holomorphic in the whole domain, the
helicity +1/2 (—1/2) given by the operator 0~ ma (—i0”m,) in the null
plane may be taken to be the limiting value of the internal helicity in the
upper (lower) half-plane.

In the sense of Minkowski space-time, the characteristics £ >> 0 and
¢ << 0 in the upper and lower half-planes indicate that the domain is
disconnected and anisotropic in nature. This indicates that the behavior of
the angular momentum operator in such a region will be similar to that of a
charged particle moving in the field of a magnetic monopole. In fact, in such
a case, the wave function given by &(z,) = &(x,) + id(€,) can be treated
as describing a particle moving in the external spaced-time having the coordi-
nate X, with an attached ‘direction vector’ . Thus the wave function should
takeinto account the polar coordinatesr, 6, ¢ along with theangle x specifying
the rotational orientation around the *direction vector’ . The eigenvalue of
the operator 9/dx just corresponds to the internal helicity. For an extended
body represented by the de Sitter group SO(4,1), 6, ¢, and x just represent
the three Euler angles.

In 3-space, these three Euler angles correspond to an axisymmetric
system where the anisotropy is introduced along a particular direction and
the components of the linear momentum satisfy a commutation relation of
the form

. X
[P, p] = |P~€ijkﬁ (20)

where p. represents the measure of anisotropy and isgiven by the commutation
relation, suggesting that it behaves |ike the strength of a magnetic monopole.
The angular momentum operator J is given by

J=rYxp—-pr (11)

The spherical harmonics incorporating the term . have been extensively
studied by Fierz [8] and Hurst [9]. Following them, we write

yre = (1 + X)*(mfu)/Z(]_ — X)*(m+u)/2

dlfm
>< —_
d'-mx

with x = cos 6. The quantities m and p. represent the eigenvalues of the

(1 + X1 — x)'+remme (12)
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operators i0/ddp and i9/9x, respectively, when the wave function is written
in terms of the angles 8, ¢, and x. For m = =1/2, . = *£1/2, we have

YY392 = sin(0/2) €/%6-%
Y 173%Y? = cos(6/2) e A +x)
Y132 = cog(6/2) €/24 0
Y3272 = sin(6/2) e 26 (13)

These represent spherical harmonics for half-orbital angular momentum | =
12 with p. = =1/2. An important feature of this formalism is that a particle
can move with | = 1/2 in the internal space of a composite system with the
specific property that I, = +1/2 and —1/2 corresponds to the internal helicity
or orientation [6]. Note that the motion of a particle in an anisotropic space
gives rise to similar features as that of a charged particle in the field of a
magnetic monopole. This becomes evident from the angular momentum
relation (11), where . can be viewed as the monopole charge. The fact that
in such an anisotropic space the angular momentum can take the value 1/2
is then found to be analogous to the result that a monopole—charged particle
composite representing a dyon satisfying the condition eg = 1/2 has angular
momentum shifted by 1/2 unit and statistics shift accordingly [10]. A fermion
(boson) moving with | = 1/2 will be transformed into a boson (fermion).

In this complexified space-time exhibiting the interna helicity states,
we can write the metric g,,,(x, 6, 6). It has been shown elsewhere [11] that
this metric structure gives rise to the S.(2, C) gauge theory of gravitation
and generates the field strength tensor F,, given in terms of the gauge fields
B,, which are matrix-valued, having the S.(2, C) group structure, and is
given by

Fpn = —0,B, +9,B, + [B,, B] (14

Since 0 (0) is the spinorial variable which represents the ‘direction vector’
attached to the space-time point, these effectively represent the extension of
arelativistc quantum particle representing a fermion and we can reformulate
it as a gauge-theoretic extension of a relativistic particle with matrix-valued
non-Abelian gauge fields having the S.(2, C) group structure.

In fact, we can write for the relativistic extension of a quantum particle
the position and momentum variables as [5]

Q. = —i(dlop, + B,)
P, = i(dloq, + C,) (15)
B,.C, € 9.(2 C)
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Now we note that if we demand F,, = 0 at all points on the boundary S
of a certain volume V# inside which F,, # O, the gauge potentials tend to
a pure gauge in the limit toward the boundary

B.=U"19,U (16)
Thus we write in this limiting case
L=M2Tr(9,Uta,U + Tr[o,UUT, 9,UUT? a7)

where M is a suitable constant having the dimension of mass. It is noted that
the Skyrme term Tr[9,,UU", 9,UU"]? arises here from the term F,,F**, where
thefirst term isrelated to the gauge-noninvariant term M 2B, B* in the Lagran-
gian. Thus we find that the quantization of a Fermi field considering an
anisotropy in the internal space leading to an internal helicity giving rise to
fermion number corresponds to the realization of a nonlinear o-model, where
the Skyrme term introduced for stabilization of the soliton automatically
arises here as an effect of quantization. Thusin this picture massive fermions
appear as solitons and the fermion number is of topological origin. Indeed,
for the Hermitian representation, we can take the group manifold as SU(2)
and this leads to a mapping from the space 3-sphere S2 to the group space
S [U(2) = S7; the corresponding winding number is given by

1

9= 2am2

J ds, e*® Tr[U ~19,UU ~19,UU ~19,U] (18)
It is noted that the Skyrme term which arises here as an effect of quantization
does not manifestly express the internal anisotropy as it is invariant under P
and T. So to incorporate this anisotropic feature in the Lagrangian, we should
add the Wess—Zumino term, where the action is given by

Sy = 2413;2 L d5x e+ Tr[U ~19,UU ~%9,UU ~13,UU ~13,UU 1, U]
X=X, 1 (19)

Here the physical space-timeisthe boundary of the five-dimensional domain.

Noted that if we demand 9_(2, C) invariance in spinor affine space, the
simplest Lagrangian density which isinvariant under S.(2, C) transformation
is given by

L= _71 Tr €*PF oF. (20)
which violates P and T and thus finds its correspondence with the Wess—

Zumino termin the Skyrme Lagrangian. Following Carmeli and Malin[12], if
weapply the usual procedure of variationa calculus, we get thefield equations
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aB(EQByachB) - [BSI eaBVaFaB] =0 (21)

Taking the infinitesimal generators of the group S.(2, C) in tangent space as

0 0 |11 o0 10 1
gl |:1 O:|v 92_|:0 _l:|v g3_|:0 0:| (22)
we can write
BuzBﬁgazﬁu-a

Fo=F2,2=F, 0 (23)

Evidently, in this space, these S.(2, C) gauge fields will appear as back-
ground fields.

Thus, to describe a matter field in this geometry, the Lagrangian will
be modified by the introduction of this SL(2, C)-invariant Lagrangian density.
Hence, for a massless Dirac field, we write for the Lagrangian

L= —¢y,Db — %Tr L S S (29

where D, is the SL(2, C) gauge-covariant derivative defined by
D, =4, — igB, (25)

where g is some coupling strength.
From this we can construct a conserved current corresponding to this
Lagrangian density (neglecting the coupling with the gauge field)

fi = Ty + BB, x P
=Je+ ik (26)
Indeed, we find from (21) that

eB[9,F s~ B, X Fog] = 0 (27)
This suggests that
ji = emoPB, X Foq
= By, F g (28)
This gives
3,18 = ey 9, F 0 = (29)

However, in the Lagrangian (24), if we split the Dirac massless spinor into
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chiral forms and identify theinternal helicity with left (right) chirality corres-
ponding to 6 (8), we have the following conservation laws [13]

1, . — ]

au[é (_ng—'RprL‘jR + J;]L =0

1, . - - Ll
au E (_IgllJL'YlebL + IngRyuq—’R) + Wl = 0

a[% (~ighuyad) + 32 | = 0 (30

These three equations represent a consistent set of equations if we choose
L= —j2l12; 3= +j2l2 (31)
which evidently guaranteesthe vector current conservation. Then we can write
du(Urylr + j2) = 0
Ay — j3) =0 (32)
From these, we have
du(lrywysh) = auin = —20,]% (33)

Thustheanomaly isexpressed herein termsof the second S.(2, C) component
of the gauge field current j2. However, since in this formalism the chiral
currents are modified by the introduction of j2, we note from (32) that the
anomaly vanishes.

The charge corresponding to the gauge field part is

q= Jj% d3x = J e”kdO'iszk (i,j,k=1,2,3 (34)
surface

Visualizing F% to be the magnetic field-like components for the vector
potential B?, we see that q is actually associated with the magnetic pole
strength for the corresponding field distribution. Thus we find that the quanti-
zation of aFermi field associates a background magnetic field, and the charge
corresponding to the gauge field current effectively represents a magnetic
charge.

The term e*®FgF,, in the Lagrangian can be expressed as a four-
divergence of the form 9,Q*, where

Qr = _16];1-2 ehaBy Tr[BaFBV— % (BaBBBv):| (35)

We recognize that the gauge field Lagrangian is related to Pontryagin density
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1
1612

where Q" is the corresponding Chern—Simons secondary characteristic class.
The Pontryagin index

P:

Tr*F L Fu = 0,00 (36)

q= J P d“x (37)

is then a topological invariant. As we know, the introduction of the Chern—
Simons characteristic class modifies the axia vector current as

15 =j5+ 20, (38)
where , ] = 0, though 4,,j5 # O; we find from (33) that the Chern—Simons

characteristic class is effectively represented by the current constructed from
the SL(2, C) gauge field. Thus we have the Chern—Simons topology built
into the system and is associated with the topological aspects of a fermion
arising out of the quantization procedure. We find that the origin of the
Wess—Zumino term in the Skyrme Lagrangian is associated with the P and
T-violating gauge field current j2. From this analysis, we note that the gauge
field current associates a magnetic field with afermionin 3 + 1 dimensions.
Indeed, we pointed out that the quantization procedure of a fermion suggests
that a ‘direction vector’ is attached to a space-time point and the orientation
of this ‘direction vector’ is associated with the fermion number. This helps
us to have a topological origin of the fermion number associated with the
Pontryagin index, which effectively represents the magnetic charge arising
out of the background 9.(2, C) gaugefields. Asdiscussed earlier, this picture
of a fermion has its correspondence with a scalar particle moving in an
anisotropic spacewith| = /2 withaspecificl, value. Theinherent anisotropic
feature of space will associate a magnetic field with such a particle and the
classical free particle current will be modified by the background gauge field
current j2 representing the contribution of the associated magnetic field.
Evidently this will correspond to a chiral fermion. However, the background
magnetic field energy [ B? d3x will modify the free-particle mass of such a
particle. Even if such a particle has its free mass zero, the magnetic field
energy will contribute to the mass of such a particle and it will behave as a
massive particle. The present analysis suggests that such a particle may be
considered as a skyrmion represented by a nonlinear o-model with Wess—
Zumino term.

If we consider a composite system such that the space-time coordinate
of each constituent has an attached *direction vector’ (vortex line), we may
view it asif it ismoving with | = 1/2 in an anisotropic space with a specific
I, value. This implies that a bosonic constituent will behave as if it is a
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skyrmion and a fermion will behave as if a spin carrier is attached to a baby
skyrmion. Evidently this will transform a fermionic (bosonic) constituent
into a bosonic (fermionic) one. So, for afermion, we will have the centrifugal
barrier minimized, denoting a strong attractive interaction. Thus we note that
in a composite system, if we consider that the internal space is anisotropic
in nature so that a congtituent can move with | = 1/2 with a specific |,
value, the associated magnetic field will generate a strong attractive statistical
interaction and this will help us to have stable bound states. In the following
sections, we shall depict hadrons as the bound states of such systems where
the internal SU(3) symmetry is generated from geometrical considerations.

3. BABY SKYRMIONS, REFLECTION GROUP, AND THE
INTERNAL SYMMETRY OF HADRONS

It is well known that the wave function of the form &(x,, &,) where £
is an attached vector extends the Lorentz group SO(3, 1) to the de Sitter
group SO(4, 1). The irreducible representations of SO(4), the maximal com-
pact subgroup of SO(4, 1), are characterized by two numbers (k, n), where
k is an integer or half-integer and n is a natural number. These two numbers
are related to the values of the Casimir operators

%9‘5&8 =K+ (k+n?>-1

5 €0 5,8, = k(K + ) (39

where S, «, B = 1, 2, 3, 4, are the generators of the group. Barut and
Bohm [14] have shown that the representation of SO(4, 1) given by s =
1/2, k = *£1/2 can be fully extended to two inequivaent representations of
the conformal group SO(4, 2). In fact, these k values actually correspond to
the eigenvalues of the operator k = 4(a' a — b' b) in the oscillator representa-
tion of the SO(3); X SO(3), basis of SO(4). The value of k as well as its
signature is an SO(4, 2) invariant. The representation s = 0, k = 0 in the
conformal representation of SO(4, 2) describes the massless spin-0 particle.
Therepresentation s = 1/2, k = *=1/2 describesthe helicity state of amassless
spinor. Now for a massive spinor, the conformal invariance breaks down and
the values k = *£1/2 then represent internal helicity states so that the two
opposite orientations correspond to particle and antiparticle. In the complex
manifold with the coordinate z, = x, + i§,, if we take the wave function
d(z,) = d(x,) + id(&,), the inherent disconnected nature of the attached
vector &, for a massive spinor alows us to write
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(b(gpb) = ¢+(§u) + d)f(‘gu) (40)

where $.(§,) [d-(&,)] isdefined in the upper (lower) half-plane characterised
by the fact that &, belongs to the interior of the forward (backward) light
cone with the space M specified by [|€,]* = O representing the boundary.
Evidently thesetwo domains are characterized by theinternal helicity k = +1/
2 (—1/2) representing the particle (antiparticle) state. Again, asthisfermionic
feature is realized when a scalar particle moves in an anisotropic space with
| = 1/2 having a specified |, value, we note that the internal helicities given
by the k values +1/2 and —1/2 effectively represent the two I, values for
such a system, which can be described as a baby skyrmion (antiskyrmion).

Since these representations can be fully extended to the conformal group
O(4, 2), we can deal with the eight-component conformal spinors. The
simplest conformally covariant spinor field equation postulated as an
S0(4, 2)-covariant equation in apseudo-Euclidean manifold R*?isof theform

(raai + m);;(n) -0, a=012356 (41)

a

When the elements of the Clifford algebra I', are the basis unit vectors of
R*2, m is a constant matrix and £(m) is the eight-component spinor field.
Cartan [15] has shown that in the fundamental representation where the unit
vectors are represented by 8 X 8 matrices of the form

0 E
r=lg 5 @)
the conformal spinors & are of the form
b1
= 43
€= lon (43)

where ¢, and ¢, are Cartan semispinors. The characteristic property of these
spinors is that for any reflection, ¢, and &, interchange. In this basis, Eq.
(41) becomes equivalent in Minkowski space R®! to the coupled equations

i dby = —md,
I by = —mdy (44)
However, it is also possible to obtain from Eq. (41), apair of standard Dirac

equations in Minkowski space. To this end, we have to act with a unitary
transformation C, given by
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L R
1 1 . 20 . .
whereL = 3(1 + vs), R=3(1 — ys) withys = o —1 Using this, we have
ce=¢ =" (46)
U7

and

cir,c, ==Y O (47)

1 1l n 0 ,yu

This suggests that Eq. (41) is equivalent in Minkowski space to the pair of
standard Dirac equations

(i7+mi,=0
(is+mi,=0 (48)

It is to be noted that the space or time reflection interchanges ¢, and ¢, and
transforms {s; and s, into themselves. Conformal reflection interchanges both
by © by and Y, < Y. It should be added that ¥, and i, may represent
physical free massive fermions, whereas ¢, and ¢, do not unless they are
massl ess since they obey the coupled equations. However, in the case of m #
0 if we define ¢, and ¢, such that they represent two different ‘internal
helicity’ states given by k = +1/2 and —1/2, i.e.,, ¢, = y(k = +1/2) and
&, = Yi(k = —1/2), Egs. (44) can be reduced to a single equation with two
internal degrees of freedom when the linear combination of ys(k = +1/2 and
P(k = —1/2) represents an eigenstate. Now to retain the four-component
nature of the spinor in Minkowski space, thesetwo internal degreesof freedom
should be associated with particle—antiparticle states. Evidently, this property
of ¢, and ¢, satisfies the criteriathat the space, time, or conformal reflection
changes into one another. This follows from the fact that the parity operator
changes the sign of k. Besides, the time reversal changes the orientation of
the the internal helicity and hence changes the sign of k. Moreover, the
conformed reflection changes one into the other. Thus each member of the
doublet of massive spinors having the interna helicity k = +1/2 and —1/2
and corresponding to the particle and antiparticle states represents a Cartan
semispinor. Evidently for the case of a baby skyrmion as this is represented
as a scalar particle moving in an anisotropic space with | = 1/2 having a
specificl, value, thisl, value (+1/2 or —1/2) effectively representstheinternal
helicity k (+1/2 or —1/2). So if we consider a doublet of baby skyrmion and
antiskyrmion havingl, = +1/2 and —1/2, P, T, aswell as conformal reflection
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will change such a skyrmion into an antiskyrmion and each member will
represent a Cartan semispinor.

To have a geometrical interpretation of these spinors, one may look at
the totally isotropic 3-planes of a properly complexified pseudo-Euclidean
space R*2. There exist two different families of totally isotropic 3-planes
which are transformed into one another by areversal and each is transformed
into itself by rotation. The R*? spinors are isotropic 3-vectors associated with
these planes. These can be split into its semispinors Q = {$}, where ¢ and
| are four-component spinors belonging to these two different families.
Furthermore, the analysis of Cartan shows that it is possible to regard the
components of ¢ as the homogeneous coordinates of apoint in 3-dimensional
projective space P2, whereas those of s may be regarded as the homogeneous
coordinates of a plane in P3. Moreover, a point—plane correspondence exists
in P® which reflects the conjugation relation of the semispinors. On the other
hand, according to the analysis of Penrose [16], there also exists a 1-1
correspondence between twistors of vaence (3) and (9) and point < planein
P3. Thus the semispinors into which an eight-component spinor splits in the
Cartan basis are identical to the Penrose twistors. This reflects the analysis
of Sternberg [17] that charge conjugation corresponds to the Hodge star
operation in twistor space.

Now we note that when a fermion moves in the internal space of a
system with | = 1/2 having a specific |, value, this can be viewed as if a
spin carrier is attached to a baby skyrmion. If we have the constraint that a
fermion (antifermion) can only be associated with a baby skyrmion (antiskyr-
mion), which means that in this system, a fermion can move only with |, =
+1/2 (or —1/2) and an antifermion can move only with I, = —1/2 (or
+1/2), then such a particle can be considered as a Cartan semispinor and
the doublet will represent a conformal spinor. The induced change in angular
momentum and hence in statistics will produce a strong statistical attraction
caused by the associated magnetic field and will enable us to form a
bound state.

Budinich [18] argued that we can generate an internal symmetry algebra
from the conformal reflection group. Budinich suggested that we can call a
reflection algebra corresponding to a reflection group an internal symmetry
algebra for a given field theory if the following hold:

(@) The corresponding reflection group, when accompani ed by the corres-
ponding coordinate reflections, is a covariance group for the equation of
motion in Minkowski space.

(b) 1t commutes with the Poincaré Lie algebra and with the space-time
reflection algebra.

(c) The transformation induced by the reflection algebra on the fields
leaves the action of the theory invariant.
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If the reflection algebra commutes only with the Poincaré algebra, but
does not commute with the space-time reflection algebra L,, the algebra may
be termed a restricted internal symmetry algebra.

To study the conformal reflection algebra, note that since O(3, 1) is a
subgroup of O(4, 2), the conformal reflection group will contain as asubgroup
the Lorentz reflection group L, of four elements

L,=EST,ST=1J (49)
where E = identity, S = space reflection, T = time reflection, and ST =
J = strong reflection. In R*? space, coordinates are taken to be My, M2, Ma,
MNs, Mo, Me With the metric (+ + + + — —); the reflections

S M5 - ms= s

Te M° > me=—me (50)

correspond in Minkowski space to the inverse radius transformation and the
same & J. Using them, we can build up the four-element Abelian group

Cp6 = E, SS! TG! S::TG (51)

whichiscalled the partial conformal reflection group. Thenthetotal conformal
reflection group, indicated by Cs, is given by the direct product

Ce = CPG ® L4 (52)
The conformal reflection group is represented in conformal spinor space by

the algebra U, ., which may be called the conformal reflection algebra.
Let & be a conformal spinor in the Dirac basis

U1
U2

We know that the Lorentz reflection group L, when acting on the Dirac
spinor Ys; isisomorphic to a U, algebra whose Hermitian elements are given
by the matrices 1, iyo, Yoys, vs- The transformations S, Tg, ST When acting
on the Dirac doublet of the conformal spinor &P correspond to

S
T - il (53)
ST — I'8I%

& =

Thus the group given by Cp, [Eq. (51)] will be represented by the Lie algebra
U, and the corresponding real subalgebra SU(2) may be obtained taking
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Hermitian elements I's, il's, I'sI's. Thus the group Cg is isomorphic to the
product

Uz,c ® Uz,c = U4,c (54)

Then with elegant arguments Budinich proved the following propositions:

(1) The reflection algebra U, ¢ corresponding to the partial conformal
reflection Cp, is an internal symmetry algebra for the conformal spinor
doublets. For massive (but degenerate) components of the doublet, U, ¢
is maximal.

(2) For massless conformal spinors or for asystem of massive conformal
spinors interacting at very short distances, the direct product of the partial
conformal reflection group times the strong reflection in Minkowski space
generates arestricted internal symmetry algebra of order eight which can be
putintheform U, & Uyc g Thisalgebramay be reduced to two independent
SU(2) agebras represented by the eight four-dimensional matrices L X o,
R X g, [L =21 + vs), R =41 — vs)] acting on the two independent
doublets of Weyl fields into which the massless conformal spinor or the
system of interacting massive spinors at short distances splits.

It is to be noted that since reflection is a discrete transformation, we
get internal symmetry algebra, but not agroup. Thisdifficulty may be avoided
if we take the conformal spinor representing a doublet of baby skyrmion and
antiskyrmion which moves with | = 1/2 having |, = +1/2 and —1/2 and
characterized by the wave function ¢(z,) = &(x,) + id(£,), d(€,) being
defined in the domains D~ and D*, where &, belongs to the interior of the
forward and backward light cones and the space of null plane &2 = O is the
boundary. Indeed, if we take &(z,) as holomorphic in the domains D~ and
D*, the two states with [, = +1/2 and —1/2 can be linked through rotation
when the angular momentum is given by relation (11). From the above
analysis, this will then represent two independent group structures U(2), ®
VU (2)r. Moreover, the fixed |, value suggests the existence of the Abelian
group U(1). This SU(2) ® U(1) group then denotes isospin and hypercharge.

In the harmonic oscillator representation, we can define boson operators
for cylindrical coordinates

a. = (a, + ia)/2

dy = 9,
al = (af = iaf)/\/2
ab=al (55)

In terms of these operators, we can write
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H = iin{ala, + ata_ + ala, + 3/2}

N\ = ala_

A =a'a,

Ao = % (@la, — a'la) (56)

Here the \-operators are the operators of the two-dimensional oscillator group
U(2), and the two independent SU(2) internal symmetry algebras generated
by reflection appear here as the representations of the algebra of this group,
which gives rise to isospin. The total isospin operator is given by

A2 = :—ZL{M)\_ + AN 4 A (57)
In addition to these isospin operators, we can define the remaining operators
of the algebra
B, =ala, B_=ala
C.=aja, C_=ala

N = % (@la, + a"a_ — 2alay)

- % (ala, + ala, — 2ala) (58)

The guantum number N is one third the difference between the number of
guanta in the X-Y plane and twice the number of quanta in the Z direction.
Infact, the operator N correspondsto the hypercharge of the hadron concerned
and measures a deformation or departure from spherical symmetry.

The complete classification according to SU(3) and its subgroups SU(2)
and U(1) has been given by Elliott [19]. Within a representation of SU(3),
the one number representation e of U(1) can take the values

=2+t p—3 ..., —\— 2 (59)

For a definite representation (A, ) and e of SU(3) and U(1), the group SU(2)
has representations described by

A =120 —2p — €], 220 — 2 — €] + 1,
CooMIin{E2N + 4p — €), 22\ + 4p + €)} (60)

The operator A, (@ = X, Y, 2) = ala, simply counts the number of quanta
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in the « direction. Thus states having a definite number of quanta in each
of the three directions in space will have definite value of v and €, where

v=N— Ny
e=2N,— N, — N, (61

The e and v values of the many-body system are simply the sum of the ¢
and v; vaues of the single-particle constituents

€ =2 ¢, v=2v (62)

Now, to find the various € and v vaues for the many-particle systems
according to the classification of SU(3) — SU(2) ® U(1), we first form the
N-particle function with the maximum possible value of e, €™, by putting
as many particles as allowed by the configuration scheme. It is clear that
€M = 2\ + [i for the particular representation of SU(3). If the structure of
the state having e = €™ and v = ™ is known, other states of the (A, W)
representation can be constructed using the lowering operators of SU(3). In
fact, other e and v values will be given by relations (59) and (60). In thisway,
all states classified according to SU(3) — SU(2) ® U(1) can be constructed. In
fact, by chosing e as hypercharge and v/2 as the third component of isospin,
we can find the SU(3) representations of hadronic states.

4. BABY SKYRMIONS, COMPOSITE STATE, AND THE
STRUCTURE OF HADRONS

Inview of the geometrical origin of theinternal SU(3) symmetry fromthe
reflection group and the strong statistical attraction caused by the associated
magnetic field, we can consider composite states of baby skyrmions for
hadrons, and the spin carriers can be taken to be known particles like leptons.
Indeed for this purpose we choose muonic leptons; the motivation behind
this will be made clear later.

Let us first consider the configuration (wv,), where . represents any
of the charge states u.*, v,, n~. We take that . and v, have an attached
direction vector which may be viewed asiif it is moving with | = 1/2 having
aspecificl, value, and the coupling is caused by the strong statistical attraction
due to the associated magnetic field. Then by combining the spin and orbital
angular momenta of w(v,), we get J* (J®w) = 1 or 0. The total angular
momentum J of the system is given by J = J* + J* + L, where L is the
relative angular momentum, which can take only integer values. This tota
angular momentum J is nothing but the spin of the particle represented by
the composite system. From this we see that the composite system (v, can
represent certain types of mesons with spin 0, 1, 2, and so on.
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To find the characteristics of these mesons explicitly, let us consider
that w* and .~ stands to each other as particle and antiparticle. Now taking
v, as atwo-component Weyl spinor (though it will attain mass due to the
background magnetic field) and noting that for such aparticle* spin-down’ and
‘spin-up’ statesrepresent the‘ particle’ and ‘antiparticle’ states, respectively, if
we put the restriction that the (wv,,) System representing a mesonic configura-
tion should have the fermion number zero, n* (n~) can then be bound to
an antiparticle (particle), i.e., spin-up (spin-down) state only. Furthermore,
contending that the configurations (u.*v,,) and (.~ v,,) here stand to each other
as particle and antiparticle (or vice versa), we take that the |, value of v, in
these two cases should be of opposite sign and we specify this value in the
former and latter cases as +1/2 and —1/2, respectively. Note that as we have
taken that a constituent of a hadron should behave as a Cartan semispinor,
if we specify for v, the values|, = +1/2 and —1/2 for the states (n.*v,) and
(n"v,), respectively, the other states (u*v,,) withl, = —1/2 and (. "v,) with
|, = +1/2 are excluded.

Having considered this, we now note that in the configuraton (uv,), the
different values of Ji» are related with the different charge states of the
particle ., so that the charge states of the composite system are completely
determined by these values. Then, in the case of (u*v,), we have Jy» =
Ipw + g = +1/2 + 12 = 1. Similarly, the case of (v,v,) and (n"v,) we
have Jj+ = Oand J}» = —1, respectively. So these states (w.*v,,), (v,v,), and
(n."v,) can be characterized such that these form a triplet.

Now we show that the doublet of v,’sin the systems (u."v,,) and (n"v,)
in reality behaves as a conformal spinor and Ji» = +1 and —1 for the
configurations (w*v,) and (n"v,) are related by conformal reflection, so that
this will represent a ‘restricted internal symmetry algebra U,c D U,
which will commute with Poincaré algebra, but not with space-time reflection
algebra L,. Indeed, when we consider the doublet

)

[

with the constraints Jj» = +1 (Ip» = +1/2, sp» = +1/2) for (w'v,) and
= =1y = -2, g = —1/2) for (n v,), we note that the doublet
(v‘*) represents a conformal spinor & = (d)l
Vp, d)Z
semispinor having the constraints that the space, time, or conformal reflection
transforms ¢, < ¢,. Again, for the neutral configuration (v,v,) we note that
in this system one v, will havel, = +1/2 and s, = —1/2 and the other will
have the opposite values, and in this case particle—antiparticle states will be
indistinguishable. However, for such a neutral configuration we may take

), each v, acting like a Cartan
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that the constituent fermions are oppositely charged particles such as (.~ ™).
In fact, in the very short distance region (smaller than the Compton wave-
length) the internal symmetry algebra U, &® U, can be realized, as we
may have in the Lagrangian density bilinear spinor densities of the type
Uy, bRy PR, SO that in this very short distance region they split like
massless particles. So, as in the massless case, this symmetry U, © Uyg
givesrise to two independent SU, algebras. This suggests that asin the (v,v,)
configuration, in this case also J*~ or J*" may behave asinternal symmetry.

From this analysis we note that the J value for v, in the configurations
(W'vy), v, (Wvy,) given by I = ["w + g = 1/2 + 1/2 = 1 may be
taken to represent isospin, where Jy» = +1, 0, and —1 is associated with
the charge state of the other fermion. For the neutral meson, we may have
aconfiguration like (.~ ") when J** (or J* ") representsthisisospin. Consid-
ering these aspects, we can now identify the three states of the triplet with
m-mesons w*, w° and w~. Also we note that we can have a singlet state
having J*» = "+ + g = 1/2 + 1/2 = 0 corresponding to the neutral state,
which is identified with °.

It may be noted that a triplet and a singlet of vector (tensor) mesons
can also be represented by this configuration scheme with relative angular
momentum L = 1 (2). We identify these with the triplet of p(A;) mesons
and the singlet w°(f9). It may be added that the mass spectra of spin-0, 1,
and 2 neutral isoscalar and isovector mesons are found to be in excellent
agreement with experiments when, in the relativistic formulation of the har-
monic oscillator framework incorporating the ani sotropi ¢ nature of theinternal
space, couplings like L - (J; + J,) and J; - J, are introduced, where J, = |;
+ g is the total angular momentum of each constituent [20]. The mass
spectrum of charged mesons can then be evaluated by incorporating electro-
magnetic self-energy. It may be added here that, as is well known, the
w* — % mass difference is exactly obtained by this electromagnetic self-
energy term.

It is noted from our analysisin the previous section that the geometrical
origin of the internal SU(3) symmetry suggests that hadrons having strange-
ness +1,0, —1, —2, —3will have different numbers of constituent skyrmions,
as —e represents the hypercharge, and for N-particle states we have e = ;.
A mesonic configuration with strangeness will arise when a neutral baby
skyrmion represented by a scalar or pseudoscalar particle moving with | =
1/2 having a fixed |, value is bound to another baby skyrmion represented
by ameson which may have any charge state. |dentifying the latter constituent
as w*(mw° w~) (which are formed by the leptonic constituents as discussed
above) and the neutral baby skyrmion as m° we note that the configuration
of a K-meson may be depicted asK* = (w*m?%), KO = (w°%°) with 7° moving
with | = 1/2, I, = —1/2 such that the fixed |, value of this w%-meson is
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associated W|th the strangeness quantum number. In fact we have
(-V2S=17,sothat S= +1. The antl particle state may be represented by
KO = (m 770) and K~ = (m %) with17° = +1/2, so that S= —1. To compute
isospin, we note that for a composite state of baby skyrmions, this will be
given by J = J7 @) + 3 3, where J™ =°7") represents the isospin of

7 ©)-meson in the configuration given by the J value of the neutral fermion
(antifermion) in the pionic configuration as discussed above and J; is the
total angular momentum of other neutral babél skyrmi ons. Thus the isospin
of the K-meson isgivenby J = '+ 37 whereJ™ = I”° = 1/2isthe
angular momentum of the neutral ’lTO having aflxed I, value. Indeed we have
J=1+ 12 = 12, o that the fixed |, value —1/2 (+1/2) for particle
(antiparticle) state suggests the following J, values:

Kt=(wtm®) - 3, =37 +J7°=+1-12= +1/2
KO= (mn%) - J,=Jr +J°=0— 12 = —1/2

Similarly, we will have the antiparticle state when J7° = 17° = +1/2. It may
be mentioned that the other possible JvalueJ = 1 + 1/2 = 3/2 is forbidden
here as the specific |, value of ©° does not allow all the possible J, states.

Note that just like pseudoscalar K-mesons, we can also construct vector
(tensor) meson doublets (K**, K*©), (K***, K**9) with their antiparticleswith
the same configuration schemes as the K-meson, with the constraint that the
relative angular momentum of the constituents in = (w° ™) is given by
L = 1 (2) leading to the spin-1 (2) state.

In the case of a baryon we take that a neutral spinor moving with | =
1/2,1, = +1/2 isbound to this two-pion configuration of a K-meson. Indeed,
denoting this neutral spinor as v, we note that for a nucleon, configurations
like (m* ™ %,), (m°n%,) suggest that it will have strangeness zero, as (—1/
2)S= I7° + I3 = —1/2 + 1/2 = 0. Moreover, it will have isospin given by
T= vt gm0y g Taking Js = " + s'» = 0 (1) for spin-1/2 (3/2)
baryons, we find for anucleonJ =1+ 12+ 0= 12, sothat for J, values
we have =X (I)+3°+x = 1 (0 -2 + 0 =
+1/2 (—1/2) depicting p (n) states. Note that baryon number is associated
withtheinternal helicity given by thefixed |, value of the spinorial constituent.
For an antibaryonic configuration al the constituents will have opposite
|, values.

For the 3 (A) hyperon, we consider the configurar[ion (7 v, wo),
where another baby skyrmion represented by «° moving with | = 1/2, |, =
+1/2is bound to the conflguratlon of a nucleon. This will have strangene&
(~U2)S= 17"+ I + 17° = —1/2 + V2 + U2 = +1/2,implyingS= —1.
Isospin is given by J=J +J° + v, + J° —1+1/2+0+1/2—
1 (0). The charge states are given by the J values with J, =
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JIT@, )+ +I° =10, -1) - 12+0+ 12=+1(0, —1)
representing 2+ (2°, 3 7) and for theisosinglet J = 0 we will have the neutral
configuration depicting A. Similarly for the E-particle, we consider the
conflguratlon (1T1T Vi 0 wo) so that strangeness is given by
(—1U2S=17 + 1" +12° + 17° = —1/2 + 12 + ]JZ+ ]JZ = 1 implying
S= -2 IsosplnlsglvenbyJ—J“JrJ1T AT =1+ 12+
0 + 12 + ]J2 = 1/2 with charge states related to the J, values where J, =
F@E)+ I+ + I+ X =0(-1) — U2 +0+ 12 + 1/2 = +1
2(—1/2) correspondsto the state 2° (E 7). Note that we cannot have a positive
charge state here. It may be added that no other baby skyrmion represented
by a m%-meson moving with | = 1/2, |, = +1/2 can be added to this
configuration, asthiswill not give consistent J, values. This limits the number
of spin-1/2 baryons to eight describing the octet representation of SU(3).

This scheme aso leads to the decuplet of spin-3/2 baryons. Indeed,
taking for the spinor added to the two-pion configuration state the total
angular momentum J = 1, where for J, = + 1, 0, and —1 we have the
constraint |, = 1/2 (—1/2) for particle (antiparticle) configuration, we can
take the charge states p*, v,, and ., respectively. This suggests that J, =
+1, 0 (=1, 0) correspond to a baryonic (antibaryonic) configuration and
leads to the following charge states having isospin 3/2: N**+ = (w* @° "),
N** = (m* 70 v,), N*0 = (n°n%,), N*~ = (w n%,). Adding more neutral
pionsmoving with| = 1/2 having |, = +1/2, we can construct more baryonic
states. Indeed, thiswill leadto| = 1, S= —1states Y* = (w* (n°, 7~ ) 7, 70),
| = 12, S= -2 state E*%) = (7w )w%,mn%), and thel| = 0, S= -3
state O~ = (m~ o, ww1%). Note that no other neutral pion moving with
| = 1/2 having |, = +1/2 can be added to this configuration, as this will not
give consistent J, values. This limits the number of spin-3/2 baryons to 10,
depicting the decuplet representation of SU(3).

However, inthe case of mesons, we can add to the two-pion configuration
(w*7®) (m~w°) with I7° = —1/2 (+1/2) another neutral =° having | = 1/2,
l, = =12 (+12) for the particle (antiparticle) state. This will Iead to the
isosinglet state (m*m°m®) having strangeness (—1/2)S= I17° + I7° =
—=1/2 — 12 = -1, implying S = +2. Evidently this| = 0, S= +2 state
will correspond to a positively charged meson. We can get the antiparticle
state (w~ wOw°% with opposite |, values, which will give rise to negatively
charged meson havmg | =0S= -2 Apart from these states, the system
(mw°m°m0) with one 17° = +1/2 and another 17° = —1/2 will lead to an isosin-
glet neutral meson with S = 0. This arises due to the fact that the particle
and antiparticle states in this case cannot be distinguished and so there can
be a mixing of 17° = —1/2 (+1/2) with 17° = +1/2 (—1/2). However, no
other m%-meson having the constraint |, = —1/2 (+1/2) for particle (antiparti-
cle) configurations can be accommodated in this scheme, as this will not
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lead to consistent J, values. This suggests that apart from the octet of mesons,
we can have three pseudoscalar mesons D*, D° D~ having isospin 0 and
strangeness +2, 0, and —2, respectively. For vector mesons, the neutral
configuration is the well-known ¢°-meson. From the equal spacing rule we
find mp = 725 MeV and m,, = 1020 MeV. The isoscalar charged meson D*
with strangeness +2 was reported by Yamanouchi [21] and Yamanouchi
and Kaplan [22], who also suggested the same mass (= 730 MeV) for
these particles.

With the introduction of aspinor with| = 1/2, 1, = +1/2 in the configura-
tion of these mesons we get exotic baryons. Indeed, the configuration
(m*wOmO,) with J» =0, 17> = —1/2 will lead to the spin — 1/2 baryon
Z5* havingl = 0, S= +1and for the configurations (w*w°m°w*), (w*w°nlv,),
(mOm0n%,) with J*" (I») =1, B =+ 1, J» =0 we get spin —3/2
baryons Z5**, 25", Z5° having | = 1and S= +1.

We can construct configurations for J°¢ = 0"+, 1**, 1"~ mesons and
high-spin baryons by incorporating one m°, p°, °, or f®in the S state of the
above configurations of mesons and baryons. This will not ater any internal
quantum number and will change only spin and parity.

In mesonic and baryonic multiplets the members having different
strangeness with |AS| = 1 are characterized by having one extra pionic
constitutent with its mass modified by the associated magnetic field energy.
This will automatically lead to the equal spacing rule as suggested by the
Gell-Mann—Okubo formula. One interesting consequence of this configura-
tion schemeisthat vector mesons aswell as spin-3/2 baryons can be character-
ized by the fact that the constituents have relative angular momentum L =
1, whereas for pseudoscalar mesons and spin-1/2 baryons we have L = 0.
So these will satisfy the mass relations

nE - E = e - g
g - 1§
=g, - m¢
~me. — 2 (63

which are known to be in good agreement with experiments.

5. STATIC PROPERTIES OF BARYONS

As mentioned earlier, since in the Skyrme model the Skyrme term as
well as the Wess—Zumino term appears as an effect of the anisotropic feature
of the microlocal space-time and is associated with the quantization of a
fermion, these may be treated as representing quantum fluctuations. We can
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now compute the static properties of baryons from the point of view that
these are composites of baby skyrmions using the following Lagrangian for
a baby skyrmion represented by pionic degrees of freedom:
1 1 ' 9 LU
L T F29,U"9, U+ 2 Tr[9,UUT, 9,UUT (64)

As baby skyrmions take only pionic degrees of freedom and SU(3)
symmetry is generated in a specific geometrical setup, for computation we
have restricted ourselves to the SU(2) case. In case of SU(2), the Wess—
Zumino term(19) vanishes. For a composite model of baby skyrmions, only
the kinetic term in the Lagrangian will be modified depending on the number
of baby skyrmions. This is because, as mentioned in Section 2, the origin of
the second term is the anisotropy of the internal space. So for a composite
system where the constituents (baby skyrmions) are taken to move with € =
1/2 in an anisotropic space, this second term will just represent the overall
anisotropic feature of the internal space of the composite system. So the
whol e effect of the different number of baby skyrmionsfor different composite
states representing various baryons will have to be incorporated in the
kinetic term.

Asdiscussed in Section 2, the topological features associated with chiral
anomaly relate the second component of the SL(2, C) gauge field current
j2 with the axial vector current j3 through the relation [Eq. 33]

auju = _Zapji

In view of this, we note that the pion decay constant F., which is associated
with the axial vector current j3 isrelated to the topological current 2j2 through
this relation, where j2 represents the Chern—Simons characteristic class. So
this topological relation suggests that for one baby skyrmion, the term F, in
the Lagrangian (64) should be replaced by F./2. Since a hucleon is taken to
be composed of two such baby skyrmions (pions) with a spinor attached to
them, we should replace the term F2 by (F2/4) - 2 = F2/2 = F/2, where
F.. is the experimental value of the pion decay constant. Similarly, for A,
3(E), which is considered to be composed of 3 (4), baby skyrmions (pions)
with a spinor attached to them, the value of F2 in Eq. (64) should be replaced
by F72 (F7?), where F;? = 3F2 and F2 = 4F2 = FZ. In view of this, we
can incorporate the effect of different number of baby skyrmions in various
composite states depicting different baryons in the modified value of F2 in
Eq. (64).

5.1. Mass Spectrum of Baryons

We may now follow Adkins et al. [23] to compute the mass of baryons.
We take as input the experimental value of the pion decay constant F,, =
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186 MeV. From the Lagrangian (64) we find the soliton solution by using
the Skyrme ansatz

Uo(X) = exp[iF(r) 7 - X] (65)

where F(r) = watr = 0Oand F(r) - Oasr - oo, If we substitute this ansatz
in (64), we get the expression for the soliton mass

0 2 Hovl
|\7|=4qu rz{lFﬁ[ﬁ 4 2sn F]
0 8 ar r

1 s F [smF oF\
+ = +2(—
26?2 r? [ r2 2(ar>}}dr (66)
Now if Uy = exp(iF(r)7 - X) is the soliton solution, then U = AUy A1,
where A is an arbitrary, constant, SU(2) matrix, is afinite-energy solution as

well. To treat A as a collective coordinate so that it behaves as a quantum
mechanical variable, we take

U= AU, A1 (t) (67)
where A(t) isan arbitrary time-dependent SU(2) matrix. From thiswe get [23]
L=—M + N\ Tr [95A9, A}

where W is defined in (66) and A = g = (USF.) A with

i N2
A= J P2 82 F [1 + 4<F’2 + S”;Z Fﬂ oF (68)

with 7 = el r. Numerically, A = 50.9. The SU(2) matrix A can be written
A = a, + ia-(tan)r with a3 + a2 = 1. In terms of this, we can write

3
L=-M+2\3 (&) (69)
i=0
Introducing the conjugate m, = dL/0& = 4\Ag;, we have the Hamiltonian
H=ma—-L=4\&4a—-L (70)
Taking = —id/dg; as suggested by the canonical quantization procedure,
we get
~ 13
H=M+ > (—%0ad) (71)
8\ S0

with the constraint =2, a? = 1. The operator can be interpreted asthe Lapla-
cian A on the three-sphere. The wave functions are traceless symmetric
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Tablel. Mass of the Baryons

Baryon Effective meson decay constant Mass (MeV)
N Fr=F./J2 940 (input)
AS Fr = F, /32 1151

E Fr=F, 1330

Tablell. Mass of Spin-3/2 Baryons

Baryon Mass (MeV)
N* 1216
3* 1386
g* 1537

polynomials in the a;. A typical example is (g, + ia)' with —A (ay + ia)'
= I(I + 2) (ay + ia)". Such a wave function has spin 1/2| corresponding to
the angular momentum of the baby skyrmion. Now the eigenvalues of the
Hamiltonian are

~ 1
=M+ =I(+
E=M a I(1 +2) (72)
with | = 2j, where j corresponds to the angular momentum of the baby
skyrmion. From this, we find [23]
M = 36.5F /e
4 1

Now for the composite model as considered above, we substitute the values
of F. by F., FZ, and FZ for N, (A, X), and E particles, respectively, and
we find the values in Table | for the mass of the baryons taking the nucleon
mass as the input. The value of eis found to be 5.585 [24].

For spin-3/2 baryons, as discussed in the previous section, we have the
mass relations

mp — e = R — R

*

I
S

*

o o

(74)

The values of masses of spin-3/2 baryons from the above relation using the
value, m, = 785 Mev and m, = 140 Mev are given in Table Il. The value
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of mg- can be found from the equal spacing rule, which gets support from
the decomposition of the symmetry U(3) - SU(2) ® U(1), and the value
of strangeness —3 suggests that it has another baby skyrmion more than that
of E*.

5.2. Magnetic Moments of Baryons

From the discussion above, we can define the anomalous baryon cur-
rent as

e”‘vaﬁ

(T
B 2472

Tr[(U~%,U) (U~%9,U) (U-3,U)] (75)

This follows from Eq. (28), when in the pure gauge condition F,,, = 0, we
can write
B.=U1,U, Ue UQ2

If we substitute U = A(t)UgA (1), following Adkins et al. [23], we can write
the angular integrals associated with the V-A current

J dQ Va0 = % i4mA’ Tr[(9o AA 7] (76)
J dQ g-xva = % imA Tr(7-gm A 11,A) (77)
J dQ AR = % wD’ Tr(r A 'T,A) (78)

where

. 4 sin? F
AN =8mF|F2+ <5 |F'2+
sin [ﬂ 2( 2 )]

D' = F2<F, L sin ZF)
" r
: - L
+i(stFF,eran; Fego,sn anZF)
e\ r r

From (75) the baryon current and charge density can be written as



2694 Bandyopadhyay

__1 sF

B = 2?12 F’ (79)
. .ekdn?F _ 1
B = |2—1T2 . F'% Tr[(0oA 1) AT] (80)

The baryon charge per unit r is
pa(r) = 4nr?Bo(r) = —% SN’FF’
anditsintegral [ pg(r) dr = 1givesthebaryonic charge. Theisoscalar mean
square radius is given by
* 4.47
o= | it o = 55 Y

From (76), the isovector charge density is given by
r2sin? F {F2 + (4/€’)[F'? + (sin? F)/r?]}

pi-1(r) = = (82)
L r2sn? F {F2 + (4/6’)[F'? + (sin> F)/r2} dr
The isoscalar and isovector magnetic moments are, respectively,
Wio=3 |7 x B dx
T = %J? X V3 d (83)
The isoscalar magnetic moment density is
pii(r) = S F (84
j r2F’ sin F dr
and the isoscalar magnetic mean radius is defined by
(ur-a= | o) @)
0
The isoscalar magnetic moment is
(M=0)3 = <FZJ>\|O F—i ﬁ (86)

where T = eF.r. Also, for the isovector magnetic moment we have [23]
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(s = 57 E o ®7)

Now, to incorporate the change in the value of F, as suggested in Table I,
we note that the current B* in Eq. (75) is identical with the current j2, the
second component of the gauge field current when the gauge group is taken
to be SU(2), and we use the asymptotic pure gauge condition B, = U™ 9,
U. However, the integral [ j3 d® x corresponds to the monopole charge .,
which is related to the baryonic charge given by the winding number g of
the mapping of the group manifold S{SU(2) = S7 to the field manifold S
by the relation 2. = g [13]. For the baryonic charge 1, we have p = 1/2.
So we should normalize the expression for the mean square radius (r?)
accordingly. Now, from expression (81) we note that this should be multiplied
by 2, which we can incorporate by changing the factor F2 to F2/2. This
change should be incorporated in the isovector case also. Again as suggested
in Table I, due to the compositeness of nucleon, we should change F to
F.= Fﬂ/\/i. Thus the effective change in the expressions for the isoscalar
and isovector magnetic moment, (86) and (87) is to replace F.. by F.././2,
where F, is the experimental value of the pion decay constant (186 MeV).
The g factor is defined by writing

T[98\

= (anf
Now incorporating the above changesin the value of F, wefind theisoscalar
g factor

Oi=0 = Gp T O = 1.56 (88)
and the isovector g factor
Oi-1=0p — g = 816 (89)
From these, we find g, = 4.86 and g, = —3.30 This suggests
wp = 2.43
My = —1.65 (90)

and the ratio |p,|/|ua| = 1.47, which is to be contrasted with the value 1.5
in the naive quark model. To compute the magnetic moments of hyperons,
we note that as the configuration of A, 3, (E) has been taken to be composed
of three (four) baby skyrmions, which is to be compared with the two-baby-
skyrmion model of a nucleon apart from the neutral spinorial constituent,
we can write the configurations of 3* = (pn9, 2~ = (nw"), A = ("),
E- =2 79, and E° = (2° ). The correction factor due to the change
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in the value of F, as given in Table | which is to be incorporated in the
expressions of the magnetic moment is .815 for A, X in relation to that of
the nucleon,

1_

2 1 J2 J2 J2 1
- £ .= = CYE . — = 815 1F!
Fr /3 Fa. J3 F. 3 F N
and .865 for = particles in relation to that of A 3,

1 /3 21 /31 1
— =N2. 2 = _ N2, - _ 85—
Fr 2 J3F. 2 Fu Fr

we can now compute the magnetic moments of hyperons. For this configura-
tion scheme, we find

wst = pp X .815 = 2.43 X 815 = 1.98
ms— = pn X .815 = —1.65 X .815 = —1.35 (91)

Again, since we have A = (nm° and the magnetic moment of the neutron
is negative, we write

(Madi—o = —(p + pn) X .815
—(2.43 — 1.65) X .815
—.63 (92)

Similarly, we find
pe- = py- X .865 = — 1.35 X .865 = —1.17 (93)

Noting that the configuration of Z° is given by (2°#°), where for (2°%° we
again write (nw® =), we find

RE0 = pn X .7

where .7 is the conversion factor in F, in relation to the nucleon,

1_1_/22_,1

Fn F. 2 F. T F;
From this we have
p=o = —1.65 X 0.7 = —1.15 (94)

In Table Il we display the predicted values for comparison with the experi-
mental values.
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Tablelll. Magnetic Moments of Baryons
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Magnetic moment Predicted value Experimental value
Mp 243 2.79
M —1.65 -191
[itpls [1tol 147 146
P+ 1.98 242
M -135 -1.16
A —.63 —.61
pE- -117 —.69
=0 -1.15 —-1.25

5.3. Electromagnetic Mass Difference

From the composite nature of baryons, we can now find the electromag-
netic mass difference of an isomultiplet of baryons. Indeed, asin our scheme
I, values of baby skyrmions are associated with strangeness, for a nucleon
where we have taken that this is composed of two baby skyrmions with a
spinor bound to it, and noting that two baby skyrmions may lead to a strange
particle like a K-meson, where strangeness is generated by the |, value of a
baby skyrmion, this strangeness value is canceled by the |, value of the spin
carrier, making it a nonstrange particle. So, assuming the simplest choice of
equal probability for various configuarations, we can take the configuration

N__ (””v)+(KU )l
\/E 22 (12

So for the proton and the neutron we can write

p= %3 [(w* m° v,) + (7" 0 v,) + (K v)]
n= %3 (mtw v,) + (@ 0v,) + (KOv,)]

Thus the mass difference is given by

m, — m, = (Mo — m-) + (M+ — myo) + (Mc+ — Myo)]

:%(m(+ ) :%(—4) MeV = —1.3 MeV

(95)

which isin excellent agreement with experiment, with the correct sign (Table
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IV). Similarly for the mass differences 3* — 3° and 2% — 3~ we note that
a X-baryon is composed of three baby skyrmions with a spin carrier, so
we write

E = (mwmv,m)

where we note that the configuration (w) may give rise to a kaon and
(wmv,) gives rise to a nucleon. Thus we can write explicitly

S = %2 [(K* v,m9) + (pnO)]

S0 = %2 [(Ko,m%) + (9]

So

My = mo = 2 [(me - me) + (m, - m)]

= % [-4 — 1.3] MeV = %3 MeV = —2.65MeV  (96)
which is to be compared with the experimental value, —3 MeV.

For ms0 — ms—, we note that as we have no negatively charged nucleon,
we can write the configuration of %~ as (nw ). Again the (ww) system here
also will not represent a negatively charged kaon K™, as this along with the
spin carrier would have created a negatively charged nucleon. Hence we write

0= %2 [(K® v, 70) + (9]

S = %2 [(KO v, 7) + ()]

so that
TablelV. Electromagnetic Mass Difference of Baryons
Mass Predicted value (MeV) Experimental value (MeV)
difference
m, —m, -13 -13
My+ — Mo —2.65 -3
M0 — M- —-4.6 —-4.8

mzo — Me- —6.4 —6.4




Geometrical Aspects of Skyrmions 2699

mo — my- = Z[(me — m) + (Mo — m)] = ~46MeV  (97)

which is in excellent agreement with the experimental value, —4.8 MeV.
A similar analysis suggests that E°, 2~ may be depicted as a composite
of S with proper charge distribution. Indeed, E° and Z~ can be written as

a combination of states
HO = E+177 + 27 wt + Eo,n.o
= E’ w0 + 20 m

I

From this, we get
mge — Mg- = (Mgt — My) + (M- — M) + (My+ — Mxo)
+ (Mt — mpo) + (My- — mMyo) + (Mo — my-)
+ (Mo — mg-)
= (Mgt — my-) + (M- — mo) + (My+ — mMyo)
Putting in the experimental values of the mass difference, we get
Mz — Mg~ = (—=7.9 + 4.6 — 3.1) MeV = —6.4 MeV (98)

This value is aso in excellent agreement with the experimental value, —6.4
+ 0.6 MeV.

In the configuration of E° () we have taken only the charge mixing
effect taking into account the hybrid state of various charge combinations.
Thevalues of mg+ — mso, Mg+ — Ms—, and Ms0 — ms— have been computed
from various configuration mixings as shown above and the probable combi-
nation of various charge states just represents a resonating effect depicting
a hybrid configuration.

6. SOME ASPECTS OF HADRONIC INTERACTIONS

According to this model of hadrons, right-handed and left-handed sys-
temsappear in asymmetric way and thissymmetry is obtained from conformal
and space-time reflection; when we split the conformal spinorsinto a doubl et
of Cartan semispinors, the above reflection symmetries can only be maintained
in strong interactions which involve only hadrons by the preservation of
handedness in the left- and right-handed systems representing particles and
antiparticles. This can be ensured through the rearrangement of the constit-
uents in such away that the specific handedness for particle and antiparticle
systemsisnot altered. Thisimpliesthat strong interactions involve composite
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systems of elementary spinorsin the configuration of ahadron. The symmetry
principle is built into the very dynamics of strong interactions. In an earlier
paper [25] we showed that the rearrangement of constituents with specific
handedness for particle and antiparticle systems can remove all the inconsis-
tencies which crop up in the naive field-theoretic formalism and satisfy al
the canons of Smatrix theory. Also this satisfies the properties of duality.
Indeed, it has been shown that according to this formalism any strong interac-
tion without exchange of hypercharge can be explained in terms of
interaction, where the interacting pions are composite states of elementary
fermions in the structure of a hadron along with the rearrangement of the
constituents. This rearrangement of the constituents gives rise to a Regge
type of amplitude for the process. Again, for a hypercharge-changing process
we suggested that this may occur when a constituent pion contributing to
the internal quantum numbers is knocked out and taken by a hadron in such
a way that the handedness is not atered. This will ensure the conservation
of hypercharge.

In case an elementary spinorial system take part in an interaction in
Minkowski space, it is expected that the right—left symmetry as well as the
full internal symmetry which appear here as a manifestation of the composite
character of conformal spinors will be destroyed. This is the case for weak
interaction, where parity, charge conjugation, and isospin symmetry are not
maintained. Indeed, in this scheme all AS = 0 semileptonic decay processes
follow from the decay of the muon in the structure of the hadron and this
explains the universality of the weak decay coupling constant. Indeed thisis
the main motivation behind taking muonic leptons as the constituents of
hadrons. For example, B-decay can be formulated through the decay of ™
in the configuration

n=@ pav,) - @, puav)+e +rvo=p+te + v

Again it is suggested that semileptonic decays with |AS| = 1 occur as a
result of the decay of the muon as well asthe transition 7° — vacuum, where
the pionic constituent in the structure of the hadron contributes to the isospin
and strangeness of the hadron concerned. For example, the A - pe™ v, can
be interpreted as follows:

A=@ pwy, 1) - @, " 7)) +e + v+ (w® - vacuum)
=p+e + e
This explains nicely the selection rules |Al| = 1/2, |AS = 1, and ASAQ #
—1 from the very dynamics of weak processes. Also, for nonleptonic decay

processes the |Al| = 1/2 and |AS = 1 rules follow from the dynamics of
such processes. Indeed, such processes occur when the transition w° -
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vacuum occurs and the residual system decays into relevant hadrons, which
can be treated nicely through the pole approximation method [26]. This
mechanism incorporates the above selection rules.

An interesting implication of this scheme is that since the internal sym-
metry algebrais generated from reflection group, parity conservation in strong
interaction is found to be a consequence of isospin conservation. Again
parity as well as charge conjugation violation in the weak interaction are
consequences of isospin violation in such processes. In case of electromag-
netic interactions, isospin violation is not accompanied by parity violation
due to the fact that this reflection group demands a disconnected gauge group
for such an interaction when the current is written in chiral form [13].

We have considered eight-component conformal spinors as the basic
ingredient of internal symmetry, so that when these split into two four-
component spinors in Minkowski space, these take part as the constituents
of hadrons in such a way that the members of the doublet take part in
particleand antiparticle configurations. Haag et al. [27] discussed theinterplay
between the conforma symmetry, internal symmetry, and supersymmetry.
Daniel and Ktorides[28] adopted R*? as the underlying space of supersymme-
try and considered the supersymmetry algebra as the algebra of inhomogenous
rotation in the spinor space associated with R*? plus an additional number
of generatorswhich can bereadily interpreted asthe elements of U(n) algebra.
In their attempt to construct the algebra, they derived the following relation
for the anticommutators of two conformal spinors:

{Qu Qg} = Masc(vasc Iap T Mae (Yas Iap T M(B7I)op

where yasc = BaBeBc, Ba, S are the 8 X 8 matrices in Cg representing the
unit vectors in R*, B7 = BoB1B2BaBsBe and yas = 5 (BaBs — BeBa)- The
parameters magc, Mas, and m are mapped onto the group generators. mas
effectively corresponds to Jag, the 15 generators of the conformal group
(2, 2). The parameter m is mapped onto a pseudoscalar generator which
isidentified as the the s transformation and is responsible for the generation
for the internal symmetry. nagc corresponds to reflection (rotation + reflec-
tion). Daniel and Ktorides ignored this. However, as it has been shown that
the reflection may lead to U, algebra, we note that the anticommutator of
conformal spinors leads to the algebra

S=gXxC

where g is the internal symmetry algebra given by
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g ={(UR) X U@)L D (U(2) X U(1)= ® U(1)}

where U(1) corresponds to strong reflection and C is the conformal algebra
given by SU(2, 2). Thus the maximal internal symmetry we may observe in
one interaction is given by g. Since conformal reflection gives rise to isospin
algebraSU(2) whenfor particle and antiparticle systemswe have two indepen-
dent SU(2) algebras and hypercharge is given by U(1) algebra such that it
has opposite values for these systems, strong interaction symmetry SU(3) is
manifested when the mass splitting of hadrons is given by the symmetry
breaking SU(3) — SU(2) X U(1), and for the particle and antiparticle world
we canwriteit as(SU(2) X U(1)). and (SU(2) X U(1))g, respectively. Besides
this we can have a parity-violating interaction SU(2). X U(1) [or SU(2)r X
U(1)], which is the symmetry group of the electroweak interaction. Indeed
it has been shown in a recent paper that the topological properties of a
fermion help usto realize the SU(2), X U(1) group structure for electroweak
unification, and weak interaction gauge bosons attain their masses, which
are of topological origin [29]. When fermions are written in chiral form, the
electromagnetic interaction is characterized by the disconnected gauge group
U(1). X U(1)g instead of the group U(1) [30, 13]. When the full symmetry
group g is taken into account, this is found to be related to gravitation
given by the Einstein—Cartan action when the U(1) corresponding to strong
reflection gives rise to torsion, which appears as the contribution of quantum
gravity [31]. As the metric part of gravitation does not distinguish between
particles and antiparticles, the internal symmetry algebra { (SU(2) X U(1)).
@® (U(2) X U(1))r} isnot disturbed by it. These are the only four possibilities
we have from the group structure g which respect CP invariance. Thisexplains
why we have only four types of interactions in nature. Moreover, since
the algebra g X C gives rise to supersymmetry algebra S, we can have
supersymmetric phase only in the massless state [32] and the generation of
massis associated with the generation of internal helicity, which distinguishes
bosons and fermions.

According to this model of hadrons, SU(3) symmetry is found to be the
maximal internal symmetry of hadrons and no flavors like charm, bottom,
and top can be accommodated in this picture. The interpretation of {s and -y
particles in terms of ¢c and bb bound states is not beyond ambiguity, as it
cannot explain consistently all the decay modes with their proper widths and
mass differences, as has been emphasized by many authors. Theinterpretation
of D-mesonsas’ charmed’ mesonsisalso introublewith respect to experimen-
tally observed relations like I'(D°% > I'(D*). Order-of-magnitude disagree-
ments have been found between old predictions and new measurements of
{ and y production at several collider facilities [33]. So we should search
for their origin in other heavy fermion models. Indeed, in a recent note [34]
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we showed that {5, v as well as D-mesons can indeed be taken as bound
states of heavy fermions.

Another significant feature of thisformalism isthat baryon number-
nonconserving processes like proton decay are forbidden by the require-
ment of Lorentz invariance. In this scheme mesonic configurations are
distinguished from baryonic configurations by the fact that in the former
case two constituents appear with handedness opposite to each other, and
as such there is no intrinsic handedness or orientation bearing signature,
but for baryons, constituents appear with a specific handedness such that
this particular orientation is related to the baryon number. Since the
configuration scheme suggests CP and CPT symmetry as particles and
antiparticles appear on equal footing, Lorentz invariance in the external
spaceismanifested herethrough CPT invariance. Now thisCPT symmetry
suggests that the orientation of the baryonic configurations must be pre-
served. In fact, if this orientation is destroyed in any process, particle—
antiparticle symmetry will be destroyed. Thus baryon number
conservation is found to be a consequence of CPT invariance and hence
of Lorentz invariance. So proton decay is forbidden in this scheme by
the requirement of Lorentz invariance. However, at extremely high tem-
perature a proton can disintegrate into its constituents through a L orentz-
noninvariant interaction.

7. DISCUSSION

We have proposed a model of hadrons on the basis of the idea that
the internal space is anisotropic in nature when the constituents appear
as baby skyrmions, where the associated magnetic field gives rise to
strong statistical attraction and the internal symmetry is generated from
thereflection group. In this scheme strong interactions involve composite
systems of elementary spinors in the configuration of a hadron when
an elementary constituent can take part only in parity-violating weak
interaction. This prompted us to take leptons as the constituents of
hadrons. However, we have taken muonic leptons as the constituents
from the consideration that all semileptonic decays of hadrons can be
interpreted in terms of the muon decay, suggesting universality. Due to
the very tiny mass of electron, it may not be possible for the (ev.) system
to form a bound state through statistical interaction as discussed here.
Again, despite e—p.—1 universality, sincethe t-lepton decaysinto hadrons
also, the configuration of T is likely to be different from e and w, and
very probably T itself represents a bound state. In view of this, muons
seem to be the only candidate for the constituents of a hadron. This also
explains the utility of the existence of muonsin nature even though they
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behave as electrons in all interactions. In fact, a crucial question in
particle physicsis why muons exist at all when they behave as electrons
in al aspects, and this gets a very good answer from our point of view
because unless muons existed, the universe would be devoid of hadrons.

Now we summarize some of the crucial predictions of the model.

1. The observation of strangeness +2 and isoscalar vector particles
&* having mass = 1020 MeV. The corresponding pseudoscalar particles
D* with 725 MeV have aready been reported by severa authors [21,
22]. Particles with similar quantum numbers should also occur in other
multiplets of mesons.

2. The mean square charge per constituent for p, ==, and 2~ will be
1/5, 1/7, and 1/9 respectively, as is evident from the configurations. For
protons it is in agreement with the experimental value, 0.18.

3. Slight breakdown of p—e universality in ep and p scattering as well
as vector and pseudoscalar mason decay [35—37]. This will happen due to
the fact that since muons (u*, v,,, ") have been taken to be the fundamental
constituents of hadrons, the basic interaction in high-energy ep and .p scatter-
ing will be effectively en. and pp scattering, and hence a slight departure
from universality is expected.

4. The possible existence of a u~ p resonance [38].

5. From the configuration of a proton p = (w* w° v,) with J’*» = 0, the
spin of the proton mainly arisesfrom the orbital momentum of the constituents.
Thisprediction isin agreement with the recent results obtained from European
Muon Collaboration [39], as pointed out by Ellis and Karliner [40]. As the
configuration (w* w°) gives rise to a kaon, the strange degrees of freedom
in a nucleon are nonvanishing in conformity with recent experimental
results [41].

6. At very high energy heavy-ion collisions, a large amount of muons
and neutrinos will be emitted due to the randomization of the direction
vectors. This may be responsible for the large amount of neutrinos observed
from Supernova ‘87.

7. Proton decay is forbidden by Lorentz invariance and at very high
energy, a proton will be dissociated into w* + 4v, through a Lorentz-nonin-
variant interaction.

8. CP violation of very small magnitude may occur in neutral baryons
because the present scheme suggests the existence of a component having
K° (K°) in the configuration. For example, in case of a neutron (m° w° v,),
clustering like (K° v,) is possible when the (m° 7% system may appear as a
KO state. The nonzero value of the dipole electric moment of the neutron can
thus be explained [42].

9. Finally, the most crucia prediction of the model is that at high
density, a system of nucleons will exhibit superfluidity. Indeed, the aniso-
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tropic feature of the internal space is the basic ingredient of superfluidity,
as has been much discussed in literature. This may have some significant
effect in neutron stars.
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