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Geometrical Aspects of Skyrmions, Reflection
Group, and the Internal Symmetry of Hadrons
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The topological aspects of skyrmions are studied and it is shown that hadrons
can be viewed as composite states of baby skyrmions when the internal symmetry
SU(3) is generated from reflection. It is shown that in an anisotropic space a
particle can move with l 5 1/2 with a specific lx value, and a bosonic constituent
moving with l 5 1/2 will appear as a baby skyrmion and a fermionic constituent
will appear as if a spin carrier is attached to a baby skyrmion. The associated
magnetic field causes a strong statistical attraction which helps to form the bound
state of such constituents. The doublet of such particles having opposite lx values
form a conformal spinor when each member behaves as a Cartan semispinor.
The conformal reflection then helps us to generate the internal SU(3) symmetry,
which splits as SU(3) → SU(2) 3 U(1), giving rise to the hadronic spectra. The
strong interaction involves a composite cluster in such a bound system when
rearrangement of the constituents takes place preserving the direction vectors,
and an elementary constituent can take part in a weak interaction, causing parity
violation. These features help us to consider elementary constituents as known
particles like leptons.

1. INTRODUCTION

The idea of the topological origin of the baryon number proposed by
Skyrme [1] and Finkelstein and Rubinstein [2] has been revived. These
authors put forward the idea that conserved quantum numbers arise as a
consequence of the topological properties of hadrons and that particles which
carry conserved quantum numbers are built up from classical fields of nontriv-
ial topology. In this picture, baryons appear as solitons, commonly known
as skyrmions. In a recent paper [3], it has been shown that the Skyrme term,
which is a square term of the commutator and is necessary for the stability
of a soliton, may appear as a consequence of the anisotropic feature of the
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internal space-time such that a ‘direction vector’ is attached to each space-time
point, and this property of internal space-time helps us to have a consistent
quantization of a Fermi field. In this scheme, all massive fermions appear
as solitons and the Skyrme term may be considered as an effect of quantization.
However, the Skyrme term does not manifestly express the internal anisotropy
as it is invariant under P and T. So to incorporate this anisotropic feature in
the Lagrangian, we should add the Wess–Zumino term, which is a five-
dimensional integral having a boundary denoting our physical space-time.
Witten [4] has shown that the constant appearing in the Wess–Zumino action
has to be an integer for the existence of a consistent quantum description,
which is analogous to the Dirac quantization of a product of electric and
magnetic charges.

The quantization procedure of a fermion suggests that we should take
into account an anisotropic feature in the microlocal space-time where a
‘direction vector’ jm is attached to the space-time point xm, and this gives
rise to an internal helicity corresponding to the fermion number [3]. The
introduction of this ‘direction vector’ can be transcribed in terms of spinorial
variables attached to space-time points which give rise to a SL(2, C ) gauge-
theoretic description of the fermion, which is described by a nonlinear s-
model with a Wess–Zumino term. The SL(2, C ) gauge fields give rise to the
Pontryagin index, which appears as a magnetic charge and is responsible for
the topological origin of fermion number. This gauge field current associates
a magnetic field which gives rise to a strong attractive interaction in a
composite system analogous to the effect of the Chern–Simons term in a (2
1 l)-dimensional system. Indeed, the anisotropic feature of the internal space
helps us to modify the angular momentum in the same way as a magnetic
monopole changes the angular momentum of a charged particle, and this
shift in angular momentum causes a shift in statistics. In fact, in such a
coordinate system a particle can move with l 5 1/2 with a specific lx value,
and a bosonic constituent moving with l 5 1/2 will appear as a baby skyrmion
and a fermionic constituent will appear as if a spin carrier is attached to a
baby skyrmion. The associated magnetic field causes a strong statistical
attraction which helps to form the bound state of such constituents. The
doublet of such particles having opposite lx values form a conformal spinor
when each member behaves as a Cartan semispinor. The two members of
the doublet correspond to particle and antiparticle states in Minkowski space
representing baby skyrmion and antiskyrmion. The conformal reflection then
helps us to generate the internal symmetry SU(3), which splits as SU(3) →
SU(2) 3 U(1), giving rise to the hadronic spectra. Thus we can have a
geometrical origin of the internal SU(3) symmetry of hadrons when these
are depicted as composite systems where the elementry constituents are bound
by a strong statistical attraction caused by the associated magnetic field. This
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then helps us to consider the elementary constituents of hadrons as known
particles like leptons.

In Section 2 we describe the topological aspects of a skyrmion and the
geometrical setup for a composite system formed by statistical interaction.
In Section 3 we discuss the geometrical origin of SU(3) symmetry from the
reflection group. Section 4 sketches a possible configuration scheme of
hadrons based on this formalism and Section 5 considers the static properties
of baryons. In Section 6 we discuss hadronic interactions and various selec-
tion rules.

2. TOPOLOGICAL ASPECTS OF A SKYRMION, COMPOSITE
SYSTEM, AND STATISTICAL INTERACTION

In an earlier paper [3] we showed that the quantization of a Fermi field
is achieved when an anisotropy in the internal space is introduced so that it
gives rise to two helicities of opposite orientations corresponding to fermion
and antifermion. To have quantization in Minkowski space, we have to take
into account a complex manifold where the coordinate is given by zm 5 xm

1 ijm, where jm is the four-vector in the internal space [5]. The anisotropic
feature of this j-space helps us to consider it as an attached ‘direction vector’
to the space-time point xm so that the two opposite orientations of the ‘direction
vector’ give rise to fermion and antifermion. This helps us to have a gauge-
theoretic extension of a relativistic quantum particle when the gauge group
is given by SL(2, C ). This inherent gauge structure seems to be the major
ingredient of the quantization procedure.

In the case of a massive spinor we can choose the chiral coordinate as

zm 5 xm 1
i
2

lm
aua (1)

where we identify the coordinate in the complex manifold zm 5 xm 1 ijm

with jm 5 1–2 lm
aua (a 5 1, 2), u being a two-component spinor. We now

replace the chiral coordinates by the matrices

zAA8 5 xAA8 1
i
2

lAA8
a ua (2)

where

xAA8 5
1

!2
F x0 2 x1 x2 1 ix3

x2 2 ix3 x0 1 x1G
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and

lAA8
a P SL(2, C )

With these relations, the twistor equation is now modified as [6]

ZaZ a 1 lAA8
a uapApA8 5 0 (3)

where pA(pA8) is the spinorial variable corresponding to the four-momentum
variable pm, the conjugate of xm, and is given by the matrix representation

pAA8 5 pApA8 (4)

and Z a 5 (vA, pA8), Za 5 (pA , v A8) with vA 5 i(x AA8 1 i–2lAA8
a ua)pA8. Now

Eq. (3) involves the helicity operator

S 5 2lAA8
a uapApA8 (5)

which we identify as the internal helicity and corresponds to the fermion
number. It may be noted that we have taken the matrix representation of pm,
the conjugate of xm in the complex coordinate zm 5 xm 1 ijm, as p AA8 5
p Ap A8, implying p2

m 5 0, and so the particle will have mass due to the
nonvanishing character of the quantity j2

m. It is observed that the complex
conjugate of the chiral coordinate given by (2) will give rise to a massive
particle with internal helicity of opposite orientation corresponding to an
antifermion. In the null plane where j2

m 5 0, we can write the chiral coordi-
nate as

z AA8 5 x AA8 1
i
2

uAuA8 (6)

where the coordinate jm is replaced by j AA8 5 1–2 uAuA8. In this case the helicity
operator is given by

S 5 2uAuA8pApA8 5 2«« (7)

where « 5 iuA8 pA8 and « 5 2iuApA. Shirafuji [7] noted that the state with
the helicity 11/2 is the vacuum state of the fermion operator

«.s 5 11/2& 5 0 (8)

Similarly the state with helicity 21/2 is the vacuum state of the fermion
operator

«.s 5 21/2& 5 0 (9)

From this analysis, it is noted that we can define a plane D2 where for the
coordinate zm 5 xm 1 ijm, jm belongs to the interior of the forward light cone
j .. 0 and as such represents the upper half-plane with the condition det
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j . 0 and 1–2 Trj . 0. The lower half-plane D+ is given by the set of all
coordinates zm with jm in the interior of the backward light cone. The map
z → z* sends the upper half-plane to the lower half-plane. The space M of the
null plane (det j 5 0) is the Shilov boundary, so that a function holomorphic in
D2 (D+) is determined by its boundary values. Thus if we consider that any
function f(z) 5 f(x) 1 if(j) is holomorphic in the whole domain, the
helicity 11/2 (21/2) given by the operator iuA8 pA8 (2iuApA) in the null
plane may be taken to be the limiting value of the internal helicity in the
upper (lower) half-plane.

In the sense of Minkowski space-time, the characteristics j .. 0 and
j ,, 0 in the upper and lower half-planes indicate that the domain is
disconnected and anisotropic in nature. This indicates that the behavior of
the angular momentum operator in such a region will be similar to that of a
charged particle moving in the field of a magnetic monopole. In fact, in such
a case, the wave function given by f(zm) 5 f(xm) 1 if(jm) can be treated
as describing a particle moving in the external spaced-time having the coordi-
nate xm with an attached ‘direction vector’ jm. Thus the wave function should
take into account the polar coordinates r, u, f along with the angle x specifying
the rotational orientation around the ‘direction vector’ jm. The eigenvalue of
the operator ­/­x just corresponds to the internal helicity. For an extended
body represented by the de Sitter group SO(4,1), u, f, and x just represent
the three Euler angles.

In 3-space, these three Euler angles correspond to an axisymmetric
system where the anisotropy is introduced along a particular direction and
the components of the linear momentum satisfy a commutation relation of
the form

[pi , pj] 5 imeijk
xk

r 3 (10)

where m represents the measure of anisotropy and is given by the commutation
relation, suggesting that it behaves like the strength of a magnetic monopole.
The angular momentum operator

›
J is given by

›
J 5

›
r 3

›
p 2 m

›
r (11)

The spherical harmonics incorporating the term m have been extensively
studied by Fierz [8] and Hurst [9]. Following them, we write

Y m,m
l 5 (1 1 x)2(m2m)/2(1 2 x)2(m1m)/2

3
d l2m

d l2mx
[(1 1 x)l2m(1 2 x)l1m]ei(m2m)f (12)

with x 5 cos u. The quantities m and m represent the eigenvalues of the
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operators i­/­f and i­/­x, respectively, when the wave function is written
in terms of the angles u, f, and x. For m 5 61/2, m 5 61/2, we have

Y 1/2,1/2
1/2 5 sin(u/2) ei/2(f2x)

Y 21/2,1/2
1/2 5 cos(u/2) e2i/2(f1x)

Y 1/2,21/2
1/2 5 cos(u/2) ei/2(f1x)

Y 21/2,21/2
1/2 5 sin(u/2) e2i/2(f2x) (13)

These represent spherical harmonics for half-orbital angular momentum l 5
1/2 with m 5 61/2. An important feature of this formalism is that a particle
can move with l 5 1/2 in the internal space of a composite system with the
specific property that lx 5 11/2 and 21/2 corresponds to the internal helicity
or orientation [6]. Note that the motion of a particle in an anisotropic space
gives rise to similar features as that of a charged particle in the field of a
magnetic monopole. This becomes evident from the angular momentum
relation (11), where m can be viewed as the monopole charge. The fact that
in such an anisotropic space the angular momentum can take the value 1/2
is then found to be analogous to the result that a monopole–charged particle
composite representing a dyon satisfying the condition eg 5 1/2 has angular
momentum shifted by 1/2 unit and statistics shift accordingly [10]. A fermion
(boson) moving with l 5 1/2 will be transformed into a boson (fermion).

In this complexified space-time exhibiting the internal helicity states,
we can write the metric gmn(x, u, u). It has been shown elsewhere [11] that
this metric structure gives rise to the SL(2, C ) gauge theory of gravitation
and generates the field strength tensor Fmn given in terms of the gauge fields
Bm, which are matrix-valued, having the SL(2, C ) group structure, and is
given by

Fmn 5 2­n Bm 1 ­m Bn 1 [Bm, Bn] (14)

Since u (u) is the spinorial variable which represents the ‘direction vector’
attached to the space-time point, these effectively represent the extension of
a relativistc quantum particle representing a fermion and we can reformulate
it as a gauge-theoretic extension of a relativistic particle with matrix-valued
non-Abelian gauge fields having the SL(2, C ) group structure.

In fact, we can write for the relativistic extension of a quantum particle
the position and momentum variables as [5]

Qm 5 2i(­/­pm 1 Bm)

Pm 5 i(­/­qm 1 Cm) (15)

Bm, Cm P SL(2, C )
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Now we note that if we demand Fmn 5 0 at all points on the boundary S3

of a certain volume V 4 inside which Fmn Þ 0, the gauge potentials tend to
a pure gauge in the limit toward the boundary

Bm 5 U 21 ­m U (16)

Thus we write in this limiting case

L 5 M 2 Tr(­mU 21 ­mU 1 Tr[­mUU †, ­nUU †]2 (17)

where M is a suitable constant having the dimension of mass. It is noted that
the Skyrme term Tr[­mUU†, ­nUU†]2 arises here from the term FmnFmn, where
the first term is related to the gauge-noninvariant term M 2BmBm in the Lagran-
gian. Thus we find that the quantization of a Fermi field considering an
anisotropy in the internal space leading to an internal helicity giving rise to
fermion number corresponds to the realization of a nonlinear s-model, where
the Skyrme term introduced for stabilization of the soliton automatically
arises here as an effect of quantization. Thus in this picture massive fermions
appear as solitons and the fermion number is of topological origin. Indeed,
for the Hermitian representation, we can take the group manifold as SU(2)
and this leads to a mapping from the space 3-sphere S 3 to the group space
S3 [SU(2) 5 S3]; the corresponding winding number is given by

q 5
1

24p2 # dSm emnab Tr[U 21­nUU 21­aUU 21­bU ] (18)

It is noted that the Skyrme term which arises here as an effect of quantization
does not manifestly express the internal anisotropy as it is invariant under P
and T. So to incorporate this anisotropic feature in the Lagrangian, we should
add the Wess–Zumino term, where the action is given by

SWZ 5
iN

240p2 #
B

d 5x emnabg Tr[U 21­mUU 21­nUU 21­aUU 21­bUU 21­gU ]

x 5
›

x , t, x5 (19)

Here the physical space-time is the boundary of the five-dimensional domain.
Noted that if we demand SL(2, C ) invariance in spinor affine space, the

simplest Lagrangian density which is invariant under SL(2, C ) transformation
is given by

L 5
21
4

Tr eabgdFabFgd (20)

which violates P and T and thus finds its correspondence with the Wess–
Zumino term in the Skyrme Lagrangian. Following Carmeli and Malin [12], if
we apply the usual procedure of variational calculus, we get the field equations
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­d(eabgdFab) 2 [Bd, eabgdFab] 5 0 (21)

Taking the infinitesimal generators of the group SL(2, C ) in tangent space as

g1 F0 0
1 0G, g2 5 F1 0

0 21G, g3 5 F0 1
0 0G (22)

we can write

Bm 5 Ba
m ga 5

›
Bm ?

›
g

Fmn 5 F a
mn ga 5

›
Fmn ?

›
g (23)

Evidently, in this space, these SL(2, C ) gauge fields will appear as back-
ground fields.

Thus, to describe a matter field in this geometry, the Lagrangian will
be modified by the introduction of this SL(2, C )-invariant Lagrangian density.
Hence, for a massless Dirac field, we write for the Lagrangian

L 5 2cgm Dmc 2
1
4

Tr eabgdFabFgd (24)

where Dm is the SL(2, C ) gauge-covariant derivative defined by

Dm 5 ­m 2 igBm (25)

where g is some coupling strength.
From this we can construct a conserved current corresponding to this

Lagrangian density (neglecting the coupling with the gauge field)
›
jm 5 c

›
gmc 1 emnab ›

B n 3
›

Fab

5
›
jm

x 1
›
jm

u (26)

Indeed, we find from (21) that

emnab[­n
›

Fab2
›

B n 3
›

Fab] 5 0 (27)

This suggests that
›
jm

u 5 emnab ›
B n 3

›
Fab

5 emnab­n
›

Fab (28)

This gives

­m
›
jm

u 5 emnab­m­n
›

Fab 5 0 (29)

However, in the Lagrangian (24), if we split the Dirac massless spinor into
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chiral forms and identify the internal helicity with left (right) chirality corres-
ponding to u (u), we have the following conservation laws [13]

­mF1
2

(2igcRgmcR 1 j1
mG 5 0

­mF1
2

(2igcLgmcL 1 igcRgmcR) 1 j2
mG 5 0

­mF1
2

(2igcLgmcL) 1 j3
mG 5 0 (30)

These three equations represent a consistent set of equations if we choose

j1
m 5 2j2

m /2; j3
m 5 1j2

m /2 (31)

which evidently guarantees the vector current conservation. Then we can write

­m(cRgmcR 1 j2
m) 5 0

­m(cLgmcL 2 j2
m) 5 0 (32)

From these, we have

­m(cgmg5c) 5 ­m j5
m 5 22­m j2

m (33)

Thus the anomaly is expressed here in terms of the second SL(2, C ) component
of the gauge field current j2

m. However, since in this formalism the chiral
currents are modified by the introduction of j2

m, we note from (32) that the
anomaly vanishes.

The charge corresponding to the gauge field part is

q 5 # j2
0 d 3x 5 #

surface

eijkdsi F 2
jk (i, j, k 5 1, 2, 3) (34)

Visualizing F 2
jk to be the magnetic field-like components for the vector

potential B2
i , we see that q is actually associated with the magnetic pole

strength for the corresponding field distribution. Thus we find that the quanti-
zation of a Fermi field associates a background magnetic field, and the charge
corresponding to the gauge field current effectively represents a magnetic
charge.

The term eabgrFabFgr in the Lagrangian can be expressed as a four-
divergence of the form ­mVm, where

Vm 5 2
1

16p2 emabg TrFBaFbg2
2
3

(BaBbBg)G (35)

We recognize that the gauge field Lagrangian is related to Pontryagin density
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P 5 2
1

16p2 Tr*FmnFmn 5 ­mVm (36)

where Vm is the corresponding Chern–Simons secondary characteristic class.
The Pontryagin index

q 5 # P d 4x (37)

is then a topological invariant. As we know, the introduction of the Chern–
Simons characteristic class modifies the axial vector current as

j̃5
m 5 j5

m 1 2"Vm (38)

where ­m j̃5
m 5 0, though ­m j5

m Þ 0; we find from (33) that the Chern–Simons
characteristic class is effectively represented by the current constructed from
the SL(2, C ) gauge field. Thus we have the Chern–Simons topology built
into the system and is associated with the topological aspects of a fermion
arising out of the quantization procedure. We find that the origin of the
Wess–Zumino term in the Skyrme Lagrangian is associated with the P and
T-violating gauge field current j2

m. From this analysis, we note that the gauge
field current associates a magnetic field with a fermion in 3 1 1 dimensions.
Indeed, we pointed out that the quantization procedure of a fermion suggests
that a ‘direction vector’ is attached to a space-time point and the orientation
of this ‘direction vector’ is associated with the fermion number. This helps
us to have a topological origin of the fermion number associated with the
Pontryagin index, which effectively represents the magnetic charge arising
out of the background SL(2, C ) gauge fields. As discussed earlier, this picture
of a fermion has its correspondence with a scalar particle moving in an
anisotropic space with l 5 1/2 with a specific lz value. The inherent anisotropic
feature of space will associate a magnetic field with such a particle and the
classical free particle current will be modified by the background gauge field
current j2

m representing the contribution of the associated magnetic field.
Evidently this will correspond to a chiral fermion. However, the background
magnetic field energy * B2 d 3x will modify the free-particle mass of such a
particle. Even if such a particle has its free mass zero, the magnetic field
energy will contribute to the mass of such a particle and it will behave as a
massive particle. The present analysis suggests that such a particle may be
considered as a skyrmion represented by a nonlinear s-model with Wess–
Zumino term.

If we consider a composite system such that the space-time coordinate
of each constituent has an attached ‘direction vector’ (vortex line), we may
view it as if it is moving with l 5 1/2 in an anisotropic space with a specific
lz value. This implies that a bosonic constituent will behave as if it is a
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skyrmion and a fermion will behave as if a spin carrier is attached to a baby
skyrmion. Evidently this will transform a fermionic (bosonic) constituent
into a bosonic (fermionic) one. So, for a fermion, we will have the centrifugal
barrier minimized, denoting a strong attractive interaction. Thus we note that
in a composite system, if we consider that the internal space is anisotropic
in nature so that a constituent can move with l 5 1/2 with a specific lz

value, the associated magnetic field will generate a strong attractive statistical
interaction and this will help us to have stable bound states. In the following
sections, we shall depict hadrons as the bound states of such systems where
the internal SU(3) symmetry is generated from geometrical considerations.

3. BABY SKYRMIONS, REFLECTION GROUP, AND THE
INTERNAL SYMMETRY OF HADRONS

It is well known that the wave function of the form f(xm, jm) where j
is an attached vector extends the Lorentz group SO(3, 1) to the de Sitter
group SO(4, 1). The irreducible representations of SO(4), the maximal com-
pact subgroup of SO(4, 1), are characterized by two numbers (k, n), where
k is an integer or half-integer and n is a natural number. These two numbers
are related to the values of the Casimir operators

1
2

SabSab 5 k2 1 (.k. 1 n)2 2 1

1
8

eabgd SabSgd 5 k(.k. 1 n) (39)

where Sab, a, b 5 1, 2, 3, 4, are the generators of the group. Barut and
Bohm [14] have shown that the representation of SO(4, 1) given by s 5
1/2, k 5 61/2 can be fully extended to two inequivalent representations of
the conformal group SO(4, 2). In fact, these k values actually correspond to
the eigenvalues of the operator k 5 1–2 (a† a 2 b† b) in the oscillator representa-
tion of the SO(3)1 3 SO(3)2 basis of SO(4). The value of k as well as its
signature is an SO(4, 2) invariant. The representation s 5 0, k 5 0 in the
conformal representation of SO(4, 2) describes the massless spin-0 particle.
The representation s 5 1/2, k 5 61/2 describes the helicity state of a massless
spinor. Now for a massive spinor, the conformal invariance breaks down and
the values k 5 61/2 then represent internal helicity states so that the two
opposite orientations correspond to particle and antiparticle. In the complex
manifold with the coordinate zm 5 xm 1 ijm, if we take the wave function
f(zm) 5 f(xm) 1 if(jm), the inherent disconnected nature of the attached
vector jm for a massive spinor allows us to write
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f(jm) 5 f+(jm) 1 f2(jm) (40)

where f+(jm) [f2(jm)] is defined in the upper (lower) half-plane characterised
by the fact that jm belongs to the interior of the forward (backward) light
cone with the space M specified by |jm|2 5 0 representing the boundary.
Evidently these two domains are characterized by the internal helicity k 5 11/
2 (21/2) representing the particle (antiparticle) state. Again, as this fermionic
feature is realized when a scalar particle moves in an anisotropic space with
l 5 1/2 having a specified lz value, we note that the internal helicities given
by the k values 11/2 and 21/2 effectively represent the two lz values for
such a system, which can be described as a baby skyrmion (antiskyrmion).

Since these representations can be fully extended to the conformal group
SO(4, 2), we can deal with the eight-component conformal spinors. The
simplest conformally covariant spinor field equation postulated as an
SO(4, 2)-covariant equation in a pseudo-Euclidean manifold R4,2 is of the form

1Ga
­

­ha
1 m2j(h) 5 0, a 5 0, 1, 2, 3, 5, 6 (41)

When the elements of the Clifford algebra Ga are the basis unit vectors of
R4,2, m is a constant matrix and j(h) is the eight-component spinor field.
Cartan [15] has shown that in the fundamental representation where the unit
vectors are represented by 8 3 8 matrices of the form

Ga 5 Z0 J
H 0 Z (42)

the conformal spinors j are of the form

j 5 Zf1

f2
Z (43)

where f1 and f2 are Cartan semispinors. The characteristic property of these
spinors is that for any reflection, f1 and f2 interchange. In this basis, Eq.
(41) becomes equivalent in Minkowski space R3,1 to the coupled equations

i ­⁄ f1 5 2mf2

i ­⁄ f2 5 2mf1 (44)

However, it is also possible to obtain from Eq. (41), a pair of standard Dirac
equations in Minkowski space. To this end, we have to act with a unitary
transformation C1 given by
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C1 5 ZL R
R LZ (45)

where L 5 1–2 (1 1 g5), R 5 1–2 (1 2 g5) with g5 5 Z1 0
0 21Z. Using this, we have

C1j 5 jD 5 Zc1

c2
Z (46)

and

C21
1 GmC1 5 GD

m 5 Zgm 0
0 gm

Z (47)

This suggests that Eq. (41) is equivalent in Minkowski space to the pair of
standard Dirac equations

(i ­⁄ 1 m)c1 5 0

(i ­⁄ 1 m)c2 5 0 (48)

It is to be noted that the space or time reflection interchanges f1 and f2 and
transforms c1 and c2 into themselves. Conformal reflection interchanges both
f1 } f2 and c1 } c2. It should be added that c1 and c2 may represent
physical free massive fermions, whereas f1 and f2 do not unless they are
massless since they obey the coupled equations. However, in the case of m Þ
0 if we define f1 and f2 such that they represent two different ‘internal
helicity’ states given by k 5 11/2 and 21/2, i.e., f1 5 c(k 5 11/2) and
f2 5 c(k 5 21/2), Eqs. (44) can be reduced to a single equation with two
internal degrees of freedom when the linear combination of c(k 5 11/2 and
c(k 5 21/2) represents an eigenstate. Now to retain the four-component
nature of the spinor in Minkowski space, these two internal degrees of freedom
should be associated with particle–antiparticle states. Evidently, this property
of f1 and f2 satisfies the criteria that the space, time, or conformal reflection
changes into one another. This follows from the fact that the parity operator
changes the sign of k. Besides, the time reversal changes the orientation of
the the internal helicity and hence changes the sign of k. Moreover, the
conformed reflection changes one into the other. Thus each member of the
doublet of massive spinors having the internal helicity k 5 11/2 and 21/2
and corresponding to the particle and antiparticle states represents a Cartan
semispinor. Evidently for the case of a baby skyrmion as this is represented
as a scalar particle moving in an anisotropic space with l 5 1/2 having a
specific lz value, this lz value (11/2 or 21/2) effectively represents the internal
helicity k (11/2 or 21/2). So if we consider a doublet of baby skyrmion and
antiskyrmion having lz 5 11/2 and 21/2, P, T, as well as conformal reflection
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will change such a skyrmion into an antiskyrmion and each member will
represent a Cartan semispinor.

To have a geometrical interpretation of these spinors, one may look at
the totally isotropic 3-planes of a properly complexified pseudo-Euclidean
space R4,2. There exist two different families of totally isotropic 3-planes
which are transformed into one another by a reversal and each is transformed
into itself by rotation. The R4,2 spinors are isotropic 3-vectors associated with
these planes. These can be split into its semispinors Q 5 {f

c}, where f and
c are four-component spinors belonging to these two different families.
Furthermore, the analysis of Cartan shows that it is possible to regard the
components of f as the homogeneous coordinates of a point in 3-dimensional
projective space P3, whereas those of c may be regarded as the homogeneous
coordinates of a plane in P3. Moreover, a point–plane correspondence exists
in P3 which reflects the conjugation relation of the semispinors. On the other
hand, according to the analysis of Penrose [16], there also exists a 1–1
correspondence between twistors of valence (1

0) and (0
1) and point } plane in

P3. Thus the semispinors into which an eight-component spinor splits in the
Cartan basis are identical to the Penrose twistors. This reflects the analysis
of Sternberg [17] that charge conjugation corresponds to the Hodge star
operation in twistor space.

Now we note that when a fermion moves in the internal space of a
system with l 5 1/2 having a specific lz value, this can be viewed as if a
spin carrier is attached to a baby skyrmion. If we have the constraint that a
fermion (antifermion) can only be associated with a baby skyrmion (antiskyr-
mion), which means that in this system, a fermion can move only with lz 5
11/2 (or 21/2) and an antifermion can move only with lz 5 21/2 (or
11/2), then such a particle can be considered as a Cartan semispinor and
the doublet will represent a conformal spinor. The induced change in angular
momentum and hence in statistics will produce a strong statistical attraction
caused by the associated magnetic field and will enable us to form a
bound state.

Budinich [18] argued that we can generate an internal symmetry algebra
from the conformal reflection group. Budinich suggested that we can call a
reflection algebra corresponding to a reflection group an internal symmetry
algebra for a given field theory if the following hold:

(a) The corresponding reflection group, when accompanied by the corres-
ponding coordinate reflections, is a covariance group for the equation of
motion in Minkowski space.

(b) It commutes with the Poincaré Lie algebra and with the space-time
reflection algebra.

(c) The transformation induced by the reflection algebra on the fields
leaves the action of the theory invariant.
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If the reflection algebra commutes only with the Poincaré algebra, but
does not commute with the space-time reflection algebra L4, the algebra may
be termed a restricted internal symmetry algebra.

To study the conformal reflection algebra, note that since O(3, 1) is a
subgroup of O(4, 2), the conformal reflection group will contain as a subgroup
the Lorentz reflection group L4 of four elements

L4 5 E, S, T, ST 5 J (49)

where E 5 identity, S 5 space reflection, T 5 time reflection, and ST 5
J 5 strong reflection. In R4,2 space, coordinates are taken to be h1, h2, h3,
h5, h0, h6 with the metric (1 1 1 1 2 2); the reflections

S5: h5 → h85 5 2h5

T6: h6 → h86 5 2h6 (50)

correspond in Minkowski space to the inverse radius transformation and the
same ^ J. Using them, we can build up the four-element Abelian group

Cp6 5 E, S5, T6, S5T6 (51)

which is called the partial conformal reflection group. Then the total conformal
reflection group, indicated by C6, is given by the direct product

C6 5 Cp6 ^ L4 (52)

The conformal reflection group is represented in conformal spinor space by
the algebra U4,C, which may be called the conformal reflection algebra.

Let j be a conformal spinor in the Dirac basis

jD 5 Zc1

c2
Z

We know that the Lorentz reflection group L4 when acting on the Dirac
spinor c1 is isomorphic to a U2 algebra whose Hermitian elements are given
by the matrices 1, ig0, g0g5, g5. The transformations S5, T6, S5T6 when acting
on the Dirac doublet of the conformal spinor jD correspond to

S5 → GD
5

T6 → iGD
6 (53)

S5T6 → GD
5 GD

6

Thus the group given by CPo [Eq. (51)] will be represented by the Lie algebra
U2,c and the corresponding real subalgebra SU(2) may be obtained taking
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Hermitian elements G5, iG6, G5G6. Thus the group C6 is isomorphic to the
product

U2,C ^ U2,C 5 U4,C (54)

Then with elegant arguments Budinich proved the following propositions:
(1) The reflection algebra U2,C corresponding to the partial conformal

reflection CP6 is an internal symmetry algebra for the conformal spinor
doublets. For massive (but degenerate) components of the doublet, U2,C

is maximal.
(2) For massless conformal spinors or for a system of massive conformal

spinors interacting at very short distances, the direct product of the partial
conformal reflection group times the strong reflection in Minkowski space
generates a restricted internal symmetry algebra of order eight which can be
put in the form U2C,L ^ U2C,R. This algebra may be reduced to two independent
SU(2) algebras represented by the eight four-dimensional matrices L 3 sm,
R 3 sv [L 5 1–2 (1 1 g5), R 5 1–2 (1 2 g5)] acting on the two independent
doublets of Weyl fields into which the massless conformal spinor or the
system of interacting massive spinors at short distances splits.

It is to be noted that since reflection is a discrete transformation, we
get internal symmetry algebra, but not a group. This difficulty may be avoided
if we take the conformal spinor representing a doublet of baby skyrmion and
antiskyrmion which moves with l 5 1/2 having lz 5 11/2 and 21/2 and
characterized by the wave function f(zm) 5 f(xm) 1 if(jm), f(jm) being
defined in the domains D2 and D+, where jm belongs to the interior of the
forward and backward light cones and the space of null plane j2

m 5 0 is the
boundary. Indeed, if we take f(zm) as holomorphic in the domains D2 and
D+, the two states with lz 5 11/2 and 21/2 can be linked through rotation
when the angular momentum is given by relation (11). From the above
analysis, this will then represent two independent group structures SU(2)L ^
SU(2)R. Moreover, the fixed lz value suggests the existence of the Abelian
group U(1). This SU(2) ^ U(1) group then denotes isospin and hypercharge.

In the harmonic oscillator representation, we can define boson operators
for cylindrical coordinates

a6 5 (ax 7 iay)/!2

a0 5 az

a†
6 5 (a†

x 6 ia†
y)/!2

a†
0 5 a†

z (55)

In terms of these operators, we can write
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H 5 "v{a†
1a+ 1 a†

2a2 1 a†
0a0 1 3/2}

l+ 5 a†
1a2

l2 5 a†
2a+

l0 5
1
2

(a†
1a+ 2 a†

2a2) (56)

Here the l-operators are the operators of the two-dimensional oscillator group
SU(2), and the two independent SU(2) internal symmetry algebras generated
by reflection appear here as the representations of the algebra of this group,
which gives rise to isospin. The total isospin operator is given by

l2 5
1
2

{l+l2 1 l2l+} 1 l2
0 (57)

In addition to these isospin operators, we can define the remaining operators
of the algebra

B+ 5 a†
1a0, B2 5 a†

2a0

C+ 5 a†
0a2, C2 5 a†

0a+

N 5
1
3

(a†
1a+ 1 a†

2a2 2 2a†
0a0)

5
1
3

(a†
xax 1 a†

yay 2 2a†
xaz) (58)

The quantum number N is one third the difference between the number of
quanta in the X–Y plane and twice the number of quanta in the Z direction.
In fact, the operator N corresponds to the hypercharge of the hadron concerned
and measures a deformation or departure from spherical symmetry.

The complete classification according to SU(3) and its subgroups SU(2)
and U(1) has been given by Elliott [19]. Within a representation of SU(3),
the one number representation e of U(1) can take the values

e 5 2l 1 m, 2l 1 m 2 3, . . . , 2l 2 2m (59)

For a definite representation (l, m) and e of SU(3) and U(1), the group SU(2)
has representations described by

L 5 1–6 .2l 2 2m 2 e., 1–6 .2l 2 2m 2 e. 1 1,

. . . min{1–6 (2l 1 4m 2 e), 1–6 (2l 1 4m 1 e)} (60)

The operator Aaa (a 5 x, y, z) 5 a†
aaa simply counts the number of quanta
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in the a direction. Thus states having a definite number of quanta in each
of the three directions in space will have definite value of n and e, where

n 5 Nx 2 Ny

e 5 2Nz 2 Nx 2 Ny (61)

The e and n values of the many-body system are simply the sum of the ei

and ni values of the single-particle constituents

e 5 ( ei , n 5 ( ni (62)

Now, to find the various e and n values for the many-particle systems
according to the classification of SU(3) → SU(2) ^ U(1), we first form the
N-particle function with the maximum possible value of e, ẽmax, by putting
as many particles as allowed by the configuration scheme. It is clear that
ẽmax 5 2l̃ 1 m̃ for the particular representation of SU(3). If the structure of
the state having e 5 ẽmax and n 5 ñmax is known, other states of the (l, m)
representation can be constructed using the lowering operators of SU(3). In
fact, other e and n values will be given by relations (59) and (60). In this way,
all states classified according to SU(3) → SU(2) ^ U(1) can be constructed. In
fact, by chosing e as hypercharge and n/2 as the third component of isospin,
we can find the SU(3) representations of hadronic states.

4. BABY SKYRMIONS, COMPOSITE STATE, AND THE
STRUCTURE OF HADRONS

In view of the geometrical origin of the internal SU(3) symmetry from the
reflection group and the strong statistical attraction caused by the associated
magnetic field, we can consider composite states of baby skyrmions for
hadrons, and the spin carriers can be taken to be known particles like leptons.
Indeed for this purpose we choose muonic leptons; the motivation behind
this will be made clear later.

Let us first consider the configuration (mnm), where m represents any
of the charge states m+, nm, m2. We take that m and nm have an attached
direction vector which may be viewed as if it is moving with l 5 1/2 having
a specific lz value, and the coupling is caused by the strong statistical attraction
due to the associated magnetic field. Then by combining the spin and orbital
angular momenta of m(nm), we get J m (J (nm)) 5 1 or 0. The total angular
momentum J of the system is given by J 5 J m 1 J nm 1 L, where L is the
relative angular momentum, which can take only integer values. This total
angular momentum J is nothing but the spin of the particle represented by
the composite system. From this we see that the composite system (mnm) can
represent certain types of mesons with spin 0, 1, 2, and so on.
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To find the characteristics of these mesons explicitly, let us consider
that m+ and m2 stands to each other as particle and antiparticle. Now taking
nm as a two-component Weyl spinor (though it will attain mass due to the
background magnetic field) and noting that for such a particle ‘spin-down’ and
‘spin-up’ states represent the ‘particle’ and ‘antiparticle’ states, respectively, if
we put the restriction that the (mnm) system representing a mesonic configura-
tion should have the fermion number zero, m+ (m2) can then be bound to
an antiparticle (particle), i.e., spin-up (spin-down) state only. Furthermore,
contending that the configurations (m+nm) and (m2nm) here stand to each other
as particle and antiparticle (or vice versa), we take that the lz value of nm in
these two cases should be of opposite sign and we specify this value in the
former and latter cases as 11/2 and 21/2, respectively. Note that as we have
taken that a constituent of a hadron should behave as a Cartan semispinor,
if we specify for nm the values lz 5 11/2 and 21/2 for the states (m+nm) and
(m2nm), respectively, the other states (m+nm) with lz 5 21/2 and (m2nm) with
lz 5 11/2 are excluded.

Having considered this, we now note that in the configuraton (mnm), the
different values of J nm

z are related with the different charge states of the
particle m, so that the charge states of the composite system are completely
determined by these values. Then, in the case of (m+nm), we have J nm

z 5
lnm
z 1 snm

z 5 11/2 1 1/2 5 1. Similarly, the case of (nmnm) and (m2nm) we
have J nm

z 5 0 and J nm
z 5 21, respectively. So these states (m+nm), (nmnm), and

(m2nm) can be characterized such that these form a triplet.
Now we show that the doublet of nm’s in the systems (m+nm) and (m2nm)

in reality behaves as a conformal spinor and J nm
z 5 11 and 21 for the

configurations (m+nm) and (m2nm) are related by conformal reflection, so that
this will represent a ‘restricted internal symmetry algebra’ U2C,L % U2C,R,
which will commute with Poincaré algebra, but not with space-time reflection
algebra L4. Indeed, when we consider the doublet

1m+ nm

m2 nm2
with the constraints J nm

z 5 11 (lnm
z 5 11/2, snm

z 5 11/2) for (m+nm) and
J nm

z 5 21(lnm
z 5 21/2, snm

z 5 21/2) for (m2nm), we note that the doublet

1nm

nm2 represents a conformal spinor j 5 1f1

f22, each nm acting like a Cartan

semispinor having the constraints that the space, time, or conformal reflection
transforms f1 } f2. Again, for the neutral configuration (nmnm) we note that
in this system one nm will have lz 5 11/2 and sz 5 21/2 and the other will
have the opposite values, and in this case particle–antiparticle states will be
indistinguishable. However, for such a neutral configuration we may take
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that the constituent fermions are oppositely charged particles such as (m2m+).
In fact, in the very short distance region (smaller than the Compton wave-
length) the internal symmetry algebra U2,L ^ U2,R can be realized, as we
may have in the Lagrangian density bilinear spinor densities of the type
c̄Lgmc̄L , c̄RgmcR , so that in this very short distance region they split like
massless particles. So, as in the massless case, this symmetry U2,L % U2,R

gives rise to two independent SU2 algebras. This suggests that as in the (nmnm)
configuration, in this case also J m2

or J m1
may behave as internal symmetry.

From this analysis we note that the J value for nm in the configurations
(m+nm), (nmnm), (m2nm) given by J nm 5 lnm 1 snm 5 1/2 1 1/2 5 1 may be
taken to represent isospin, where J nm

z 5 11, 0, and 21 is associated with
the charge state of the other fermion. For the neutral meson, we may have
a configuration like (m2m+) when J m1

(or J m2
) represents this isospin. Consid-

ering these aspects, we can now identify the three states of the triplet with
p-mesons p+, p0, and p2. Also we note that we can have a singlet state
having J nm 5 lnm 1 snm 5 1/2 1 1/2 5 0 corresponding to the neutral state,
which is identified with h0.

It may be noted that a triplet and a singlet of vector (tensor) mesons
can also be represented by this configuration scheme with relative angular
momentum L 5 1 (2). We identify these with the triplet of r(A2) mesons
and the singlet v0( f 0). It may be added that the mass spectra of spin-0, 1,
and 2 neutral isoscalar and isovector mesons are found to be in excellent
agreement with experiments when, in the relativistic formulation of the har-
monic oscillator framework incorporating the anisotropic nature of the internal
space, couplings like L ? (J1 1 J2) and J1 ? J2 are introduced, where Ji 5 li

1 si is the total angular momentum of each constituent [20]. The mass
spectrum of charged mesons can then be evaluated by incorporating electro-
magnetic self-energy. It may be added here that, as is well known, the
p6 2 p0 mass difference is exactly obtained by this electromagnetic self-
energy term.

It is noted from our analysis in the previous section that the geometrical
origin of the internal SU(3) symmetry suggests that hadrons having strange-
ness 11, 0, 21, 22, 23 will have different numbers of constituent skyrmions,
as 2e represents the hypercharge, and for N-particle states we have e 5 (ei.
A mesonic configuration with strangeness will arise when a neutral baby
skyrmion represented by a scalar or pseudoscalar particle moving with l 5
1/2 having a fixed lz value is bound to another baby skyrmion represented
by a meson which may have any charge state. Identifying the latter constituent
as p+(p0, p2) (which are formed by the leptonic constituents as discussed
above) and the neutral baby skyrmion as p0, we note that the configuration
of a K-meson may be depicted as K+ 5 (p+p0), K0 5 (p0p0) with p0 moving
with l 5 1/2, lz 5 21/2 such that the fixed lz value of this p0-meson is
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associated with the strangeness quantum number. In fact we have
(21/2)S 5 lp

0
z , so that S 5 11. The antiparticle state may be represented by

K̄0 5 (p0p0) and K2 5 (p2p0) with lp
0

z 5 11/2, so that S 5 21. To compute
isospin, we note that for a composite state of baby skyrmions, this will be
given by J 5 J p1(p0,p2) 1 ( Ji, where J p1(p0,p2) represents the isospin of
p1(0,2)-meson in the configuration given by the J value of the neutral fermion
(antifermion) in the pionic configuration as discussed above and Ji is the
total angular momentum of other neutral baby skyrmions. Thus the isospin
of the K-meson is given by J 5 J p1(0,2)

1 J p0
, where J p0

5 lp
0

5 1/2 is the
angular momentum of the neutral p0 having a fixed lz value. Indeed we have
J 5 1 1 1/2 5 1/2, so that the fixed lz value 21/2 (11/2) for particle
(antiparticle) state suggests the following Jz values:

K+ 5 (p+p0) → Jz 5 J p1

z 1 J p0
z 5 11 2 1/2 5 11/2

K0 5 (p0p0) → Jz 5 J p0
z 1J p0

z 5 0 2 1/2 5 21/2

Similarly, we will have the antiparticle state when J p0
z 5 lp

0
z 5 11/2. It may

be mentioned that the other possible J value J 5 1 1 1/2 5 3/2 is forbidden
here as the specific lz value of p0 does not allow all the possible Jz states.

Note that just like pseudoscalar K-mesons, we can also construct vector
(tensor) meson doublets (K*+, K*0), (K**+, K**0) with their antiparticles with
the same configuration schemes as the K-meson, with the constraint that the
relative angular momentum of the constituents in p+ (p0, p2) is given by
L 5 1 (2) leading to the spin-1 (2) state.

In the case of a baryon we take that a neutral spinor moving with l 5
1/2, lz 5 11/2 is bound to this two-pion configuration of a K-meson. Indeed,
denoting this neutral spinor as nm, we note that for a nucleon, configurations
like (p+p0nm), (p0p0nm) suggest that it will have strangeness zero, as (21/
2)S 5 lp

0
z 1 lnm

z 5 21/2 1 1/2 5 0. Moreover, it will have isospin given by
J 5 J p1(0)

1 J p0
1 J nm. Taking J nm 5 lnm 1 snm 5 0 (1) for spin-1/2 (3/2)

baryons, we find for a nucleon J 5 1 1 1/2 1 0 5 1/2, so that for Jz values
we have Jz 5 Jp1

z (Jp0
z ) 1 Jp0

z 1 Jnm
z 5 1 (0) 21/2 1 0 5

11/2 (21/2) depicting p (n) states. Note that baryon number is associated
with the internal helicity given by the fixed lz value of the spinorial constituent.
For an antibaryonic configuration all the constituents will have opposite
lz values.

For the S (L) hyperon, we consider the configuration (pp0 nm p0),
where another baby skyrmion represented by p0 moving with l 5 1/2, lz 5
11/2 is bound to the configuration of a nucleon. This will have strangeness
(21/2)S 5 lp

0
z 1 lnm

z 1 lp
0

z 5 21/2 1 1/2 1 1/2 5 11/2, implying S 5 21.
Isospin is given by J 5 Jp 1 Jp0

1 Jnm 1 Jp0
5 1 1 1/2 1 0 1 1/2 5

1 (0). The charge states are given by the Jz values with Jz 5
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Jp1

z (Jp0
s , Jp2

z ) 1 Jnm
z 1 Jp0

z 5 1 (0, 21) 2 1/2 1 0 1 1/2 5 11 (0, 21)
representing S+ (S0, S2) and for the isosinglet J 5 0 we will have the neutral
configuration depicting L. Similarly for the J-particle, we consider the
configuration (pp0 nm p0 p0), so that strangeness is given by
(21/2)S 5 lp

0
z 1 ln

m

z 1 lp
0

z 1 lp
0

z 5 21/2 1 1/2 1 1/2 1 1/2 5 1 implying
S 5 22. Isospin is given by J 5 Jp 1 Jp0

1 Jnm 1 Jp0
1 Jp0

5 1 1 1/2 1
0 1 1/2 1 1/2 5 1/2 with charge states related to the Jz values where Jz 5
Jp0

z (Jp2

z ) 1 Jp0
z 1 Jnm

z 1 Jp0
z 1 Jp0

z 5 0 (21) 2 1/2 101 1/2 1 1/2 5 11/
2(21/2) corresponds to the state J0 (J2). Note that we cannot have a positive
charge state here. It may be added that no other baby skyrmion represented
by a p0-meson moving with l 5 1/2, lz 5 11/2 can be added to this
configuration, as this will not give consistent Jz values. This limits the number
of spin-1/2 baryons to eight describing the octet representation of SU(3).

This scheme also leads to the decuplet of spin-3/2 baryons. Indeed,
taking for the spinor added to the two-pion configuration state the total
angular momentum J 5 1, where for Jz 5 1 1, 0, and 21 we have the
constraint lz 5 1/2 (21/2) for particle (antiparticle) configuration, we can
take the charge states m+, nm, and m2, respectively. This suggests that Jz 5
11, 0 (21, 0) correspond to a baryonic (antibaryonic) configuration and
leads to the following charge states having isospin 3/2: N*11 5 (p+ p0 m+),
N*+ 5 (p+ p0 nm), N*0 5 (p0p0nm), N*2 5 (p2p0nm). Adding more neutral
pions moving with l 5 1/2 having lz 5 11/2, we can construct more baryonic
states. Indeed, this will lead to I 5 1, S 5 21 states Y* 5 (p+ (p0, p2)p0nmp0),
I 5 1/2, S 5 22 state J*0(2) 5 (p0(p2)p0nmp0p0), and the I 5 0, S 5 23
state V2 5 (p2 p0nmp0p0p0). Note that no other neutral pion moving with
l 5 1/2 having lz 5 11/2 can be added to this configuration, as this will not
give consistent Jz values. This limits the number of spin-3/2 baryons to 10,
depicting the decuplet representation of SU(3).

However, in the case of mesons, we can add to the two-pion configuration
(p+p0) (p2p0) with lp

0
z 5 21/2 (11/2) another neutral p0 having l 5 1/2,

lz 5 21/2 (11/2) for the particle (antiparticle) state. This will lead to the
isosinglet state (p+p0p0) having strangeness (21/2)S 5 lp

0
z 1 lp

0
z 5

21/2 2 1/2 5 21, implying S 5 12. Evidently this I 5 0, S 5 12 state
will correspond to a positively charged meson. We can get the antiparticle
state (p2p0p0) with opposite lz values, which will give rise to negatively
charged meson having I 5 0, S 5 22. Apart from these states, the system
(p0p0p0) with one lp

0
z 5 11/2 and another lp

0
z 5 21/2 will lead to an isosin-

glet neutral meson with S 5 0. This arises due to the fact that the particle
and antiparticle states in this case cannot be distinguished and so there can
be a mixing of lp

0
z 5 21/2 (11/2) with lp

0
z 5 11/2 (21/2). However, no

other p0-meson having the constraint lz 5 21/2 (11/2) for particle (antiparti-
cle) configurations can be accommodated in this scheme, as this will not
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lead to consistent Jz values. This suggests that apart from the octet of mesons,
we can have three pseudoscalar mesons D+, D0, D2 having isospin 0 and
strangeness 12, 0, and 22, respectively. For vector mesons, the neutral
configuration is the well-known f0-meson. From the equal spacing rule we
find mD . 725 MeV and mf . 1020 MeV. The isoscalar charged meson D+

with strangeness 12 was reported by Yamanouchi [21] and Yamanouchi
and Kaplan [22], who also suggested the same mass (. 730 MeV) for
these particles.

With the introduction of a spinor with l 5 1/2, lz 5 11/2 in the configura-
tion of these mesons we get exotic baryons. Indeed, the configuration
(p+p0p0nm) with Jnm 5 0, lp

0
z 5 21/2 will lead to the spin 2 1/2 baryon

Z*1
0 having I 5 0, S 5 11 and for the configurations (p+p0p0m+), (p+p0p0nm),

(p0p0p0nm) with Jm1
(Jnm) 5 1, Jm1

z 5 1 1, Jnm
z 5 0 we get spin 23/2

baryons Z*11
1 , Z*1

1 , Z*0
1 having I 5 1 and S 5 11.

We can construct configurations for JPC 5 011, 111, 112 mesons and
high-spin baryons by incorporating one p0, r0, v0, or f 0 in the S state of the
above configurations of mesons and baryons. This will not alter any internal
quantum number and will change only spin and parity.

In mesonic and baryonic multiplets the members having different
strangeness with .DS. 5 1 are characterized by having one extra pionic
constitutent with its mass modified by the associated magnetic field energy.
This will automatically lead to the equal spacing rule as suggested by the
Gell-Mann–Okubo formula. One interesting consequence of this configura-
tion scheme is that vector mesons as well as spin-3/2 baryons can be character-
ized by the fact that the constituents have relative angular momentum L 5
1, whereas for pseudoscalar mesons and spin-l/2 baryons we have L 5 0.
So these will satisfy the mass relations

m2
r 2 m2

p 5 m2
K* 2 m2

K

5m2
N* 2 m2

N

5m2
S* 2 m2

S

5m2
J* 2 m2

J (63)

which are known to be in good agreement with experiments.

5. STATIC PROPERTIES OF BARYONS

As mentioned earlier, since in the Skyrme model the Skyrme term as
well as the Wess–Zumino term appears as an effect of the anisotropic feature
of the microlocal space-time and is associated with the quantization of a
fermion, these may be treated as representing quantum fluctuations. We can
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now compute the static properties of baryons from the point of view that
these are composites of baby skyrmions using the following Lagrangian for
a baby skyrmion represented by pionic degrees of freedom:

L 5
1
16

F 2
p ­m U† ­m U 1

1
32e2 Tr[­mUU†, ­nUU†]2 (64)

As baby skyrmions take only pionic degrees of freedom and SU(3)
symmetry is generated in a specific geometrical setup, for computation we
have restricted ourselves to the SU(2) case. In case of SU(2), the Wess–
Zumino term(19) vanishes. For a composite model of baby skyrmions, only
the kinetic term in the Lagrangian will be modified depending on the number
of baby skyrmions. This is because, as mentioned in Section 2, the origin of
the second term is the anisotropy of the internal space. So for a composite
system where the constituents (baby skyrmions) are taken to move with , 5
1/2 in an anisotropic space, this second term will just represent the overall
anisotropic feature of the internal space of the composite system. So the
whole effect of the different number of baby skyrmions for different composite
states representing various baryons will have to be incorporated in the
kinetic term.

As discussed in Section 2, the topological features associated with chiral
anomaly relate the second component of the SL(2, C ) gauge field current
j2
m with the axial vector current j5

m through the relation [Eq. 33]

­mj5
m 5 22­mj2

m

In view of this, we note that the pion decay constant Fp which is associated
with the axial vector current j5

m is related to the topological current 2j2
m through

this relation, where j2
m represents the Chern–Simons characteristic class. So

this topological relation suggests that for one baby skyrmion, the term Fp in
the Lagrangian (64) should be replaced by Fp/2. Since a nucleon is taken to
be composed of two such baby skyrmions (pions) with a spinor attached to
them, we should replace the term F 2

p by (F 2
p /4) ? 2 5 F 2

p /2 5 F 82
p , where

Fp is the experimental value of the pion decay constant. Similarly, for L,
S(J), which is considered to be composed of 3 (4), baby skyrmions (pions)
with a spinor attached to them, the value of F 2

p in Eq. (64) should be replaced
by F 92

p (F-2
p ), where F 92

p 5 3–4F
2
p and F-2

p 5 4–4F
2
p 5 F 2

p. In view of this, we
can incorporate the effect of different number of baby skyrmions in various
composite states depicting different baryons in the modified value of F 2

p in
Eq. (64).

5.1. Mass Spectrum of Baryons

We may now follow Adkins et al. [23] to compute the mass of baryons.
We take as input the experimental value of the pion decay constant Fp 5
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186 MeV. From the Lagrangian (64) we find the soliton solution by using
the Skyrme ansatz

U0(x) 5 exp[iF(r)
›

t ?
›

x ] (65)

where F(r) 5 p at r 5 0 and F(r) → 0 as r → `. If we substitute this ansatz
in (64), we get the expression for the soliton mass

M̃ 5 4p #
`

0

r 2 H1
8

F 2
p F1­F

­r2
2

1
2 sin2 F

r 2 G
1

1
2e2

sin2 F
r 2 Fsin2 F

r 2 1 2 1­F
­r2

2GJ dr (66)

Now if U0 5 exp(iF(r)t̃ ? x̃) is the soliton solution, then U 5 AU0 A21,
where A is an arbitrary, constant, SU(2) matrix, is a finite-energy solution as
well. To treat A as a collective coordinate so that it behaves as a quantum
mechanical variable, we take

U 5 A(t)U0 A21 (t) (67)

where A(t) is an arbitrary time-dependent SU(2) matrix. From this we get [23]

L 5 2M̃ 1 l Tr [­0A­0 A21]

where M̃ is defined in (66) and l 5
4
6

p (1/e3Fp) L with

L 5 # r̃2 sin2 F F1 1 41F 82 1
sin2 F

r̃2 2G dr̃ (68)

with r̃ 5 eFp r. Numerically, L 5 50.9. The SU(2) matrix A can be written
A 5 a0 1 i

›
a ?(tan)

›
r with a2

0 1
›

a 2 5 1. In terms of this, we can write

L 5 2M̃ 1 2l o
3

i50
(ȧi)2 (69)

Introducing the conjugate pi 5 ­L/­ȧi 5 4lȧi , we have the Hamiltonian

H 5 pi ȧi 2 L 5 4lȧi ȧi 2 L (70)

Taking pi 5 2i­/­ai as suggested by the canonical quantization procedure,
we get

H 5 M̃ 1
1

8l o
3

i50
(2­2/­a2

i ) (71)

with the constraint (3
i50 a2

i 5 1. The operator can be interpreted as the Lapla-
cian D on the three-sphere. The wave functions are traceless symmetric
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Table I. Mass of the Baryons

Baryon Effective meson decay constant Mass (MeV)

N F 8p 5 Fp /!2 940 (input)
L, S F 9p 5 Fp!3/2 1151
J F-p 5 Fp 1330

Table II. Mass of Spin-3/2 Baryons

Baryon Mass (MeV)

N* 1216
S* 1386
J* 1537

polynomials in the ai. A typical example is (a0 1 iai)l with 2D (a0 1 iai)l

5 l(l 1 2) (a0 1 iai)l. Such a wave function has spin 1/2l corresponding to
the angular momentum of the baby skyrmion. Now the eigenvalues of the
Hamiltonian are

E 5 M̃ 1
1

8l
l(l 1 2) (72)

with l 5 2j, where j corresponds to the angular momentum of the baby
skyrmion. From this, we find [23]

M̃ 5 36.5Fp /e

l 5
4
6

p1 1
e3Fp

2 50.9 (73)

Now for the composite model as considered above, we substitute the values
of Fp by F 8p, F 9p, and F-p for N, (L, S), and J particles, respectively, and
we find the values in Table I for the mass of the baryons taking the nucleon
mass as the input. The value of e is found to be 5.585 [24].

For spin-3/2 baryons, as discussed in the previous section, we have the
mass relations

m2
r 2 m2

p 5 m2
N* 2 m2

N

5 m2
S* 2 m2

S

5 m2
J* 2 m2

J (74)

The values of masses of spin-3/2 baryons from the above relation using the
value, mr 5 785 Mev and mp 5 140 Mev are given in Table II. The value
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of mV2 can be found from the equal spacing rule, which gets support from
the decomposition of the symmetry SU(3) → SU(2) ^ U(1), and the value
of strangeness 23 suggests that it has another baby skyrmion more than that
of J*.

5.2. Magnetic Moments of Baryons

From the discussion above, we can define the anomalous baryon cur-
rent as

Bm 5
emnab

24p2 Tr[(U 21­nU ) (U 21­aU ) (U 21­bU )] (75)

This follows from Eq. (28), when in the pure gauge condition Fmn 5 0, we
can write

Bm 5 U 21­mU, U P SU(2)

If we substitute U 5 A(t)U0A21(t), following Adkins et al. [23], we can write
the angular integrals associated with the V-A current

# dV V a,0 5
1
3

i4pL8 Tr[(­0 A)A21ta] (76)

# dV
›

q ?
›

xV a,i 5
1
3

ipL8 Tr(
›

t ?
›

qti A21taA) (77)

# dV Aa,i 5
1
3

pD8 Tr(ti A21taA) (78)

where

L8 5 sin2 F FF 2
p 1

4
e2 1F 82 1

sin2 F
r 2 2G

D8 5 F 2
p1F 8 1

sin 2F
r 2

1
4
e2 1sin 2F

r
F 82 1

2 sin2 F
r 2 F 8 1

sin2 F sin 2F
r 3 2

From (75) the baryon current and charge density can be written as
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B0 5 2
1

2p2

sin2 F
r 2 F 8 (79)

Bi 5 i
eijk

2p2

sin2 F
r

F 8x̂k Tr[(­0A21)Atj] (80)

The baryon charge per unit r is

rB(r) 5 4pr 2B0(r) 5 2
2
p

sin2 F F 8

and its integral *`
0 rB(r) dr 5 1 gives the baryonic charge. The isoscalar mean

square radius is given by

^r 2&I50 5 #
`

0

r 2rB(r) dr 5
4.47
e2F 2

p
(81)

From (76), the isovector charge density is given by

rI51(r) 5
r 2 sin2 F {F 2

p 1 (4/e2)[F 82 1 (sin2 F )/r 2]}

#
a

0

r 2 sin2 F {F 2
p 1 (4/e2)[F 82 1 (sin2 F )/r 2]} dr

(82)

The isoscalar and isovector magnetic moments are, respectively,

›
m I50 5

1
2 # ›

r 3
›

B d 3x

›
m I51 5

1
2 # ›

r 3
›

V 3 d 3x (83)

The isoscalar magnetic moment density is

rI50
M (r) 5

r 2 F 8 sin2 F

# r 2 F 8 sin2 F dr
(84)

and the isoscalar magnetic mean radius is defined by

^r 2&M,I50 5 #
`

0

r 2 rI50
M (r) dr (85)

The isoscalar magnetic moment is

(mI50)3 5
^r̃2&I50

L
e

Fp

1
4p

(86)

where r̃ 5 eFpr. Also, for the isovector magnetic moment we have [23]
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(mI51)3 5
2
9

p
L

Fpe3 (87)

Now, to incorporate the change in the value of Fp as suggested in Table I,
we note that the current Bm in Eq. (75) is identical with the current j2

m, the
second component of the gauge field current when the gauge group is taken
to be SU(2), and we use the asymptotic pure gauge condition Bm 5 U21 ­m

U. However, the integral * j2
0 d 3 x corresponds to the monopole charge m,

which is related to the baryonic charge given by the winding number q of
the mapping of the group manifold S3[SU(2) 5 S3] to the field manifold S3

by the relation 2m 5 q [13]. For the baryonic charge 1, we have m 5 1/2.
So we should normalize the expression for the mean square radius ^r 2&
accordingly. Now, from expression (81) we note that this should be multiplied
by 2, which we can incorporate by changing the factor F 2

p to F 2
p /2. This

change should be incorporated in the isovector case also. Again as suggested
in Table I, due to the compositeness of nucleon, we should change Fp̄ to
F 8p 5 Fp /!2. Thus the effective change in the expressions for the isoscalar
and isovector magnetic moment, (86) and (87) is to replace Fp by Fp /!2,
where Fp is the experimental value of the pion decay constant (186 MeV).
The g factor is defined by writing

›
m 5 1 g

4M2 ›
s

Now incorporating the above changes in the value of Fp, we find the isoscalar
g factor

gI50 5 gp 1 gn 5 1.56 (88)

and the isovector g factor

gI51 5 gp 2 gn 5 8.16 (89)

From these, we find gp 5 4.86 and gn 5 23.30 This suggests

mp 5 2.43

mn 5 21.65 (90)

and the ratio .mp./.mn. 5 1.47, which is to be contrasted with the value 1.5
in the naive quark model. To compute the magnetic moments of hyperons,
we note that as the configuration of L, S (J) has been taken to be composed
of three (four) baby skyrmions, which is to be compared with the two-baby-
skyrmion model of a nucleon apart from the neutral spinorial constituent,
we can write the configurations of S+ 5 ( pp0), S2 5 (np2), L 5 (np0),
J2 5 (S2 p0), and J0 5 (S0 p0). The correction factor due to the change
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in the value of Fp as given in Table I which is to be incorporated in the
expressions of the magnetic moment is .815 for L, S in relation to that of
the nucleon,

1

F 9p
5

2

!3
?

1
Fp

5
!2
!3

?
!2
Fp

5
!2
!3

?
1

F 8p
5 .815 1/F 8p

and .865 for J particles in relation to that of L S,

1

F-p
5

!3
2

?
2

!3

1
Fp

5
!3
2

?
1

F 9p
5 .865

1

F 9p

we can now compute the magnetic moments of hyperons. For this configura-
tion scheme, we find

mS1 5 mp 3 .815 5 2.43 3 .815 5 1.98

mS2 5 mn 3 .815 5 21.65 3 .815 5 21.35 (91)

Again, since we have L 5 (np0) and the magnetic moment of the neutron
is negative, we write

(mL)I50 5 2(mp 1 mn) 3 .815

5 2(2.43 2 1.65) 3 .815

5 2.63 (92)

Similarly, we find

mJ2 5 mS2 3 .865 5 2 1.35 3 .865 5 21.17 (93)

Noting that the configuration of J0 is given by (S0p0), where for (S0p0) we
again write (np0 p0), we find

mJ0 5 mn 3 .7

where .7 is the conversion factor in Fp in relation to the nucleon,

1

F-p
5

1
Fp

5
!2
2

?
!2
Fp

5 .7
1

F 8p

From this we have

mJ0 5 21.65 3 0.7 5 21.15 (94)

In Table III we display the predicted values for comparison with the experi-
mental values.
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Table III. Magnetic Moments of Baryons

Magnetic moment Predicted value Experimental value

mp 2.43 2.79
mn 21.65 21.91
.mp., .mn. 1.47 1.46
mS1 1.98 2.42
mS2 21.35 21.16
mL 2.63 2.61
mJ2 21.17 2.69
mJ0 21.15 21.25

5.3. Electromagnetic Mass Difference

From the composite nature of baryons, we can now find the electromag-
netic mass difference of an isomultiplet of baryons. Indeed, as in our scheme
lz values of baby skyrmions are associated with strangeness, for a nucleon
where we have taken that this is composed of two baby skyrmions with a
spinor bound to it, and noting that two baby skyrmions may lead to a strange
particle like a K-meson, where strangeness is generated by the lz value of a
baby skyrmion, this strangeness value is canceled by the lz value of the spin
carrier, making it a nonstrange particle. So, assuming the simplest choice of
equal probability for various configuarations, we can take the configuration
of a nucleon as

N 5
1

!2
[(ppnm) 1 (Knm)]

So for the proton and the neutron we can write

p 5
1

!3
[(p+ p0 nm) 1 (p+ p0 nm) 1 (K+ nm)]

n 5
1

!3
(p+ p2 nm) 1 (p0 p0 nm) 1 (K0 nm)]

Thus the mass difference is given by

mp 2 mn 5 1–3[(mp0 2 mp2) 1 (mp1 2 mp0) 1 (mK1 2 mK0)] (95)

5 1–3 (mK1 2 mK0) 5 1–3 (24) MeV 5 21.3 MeV

which is in excellent agreement with experiment, with the correct sign (Table
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IV). Similarly for the mass differences S+ 2 S0 and S0 2 S2 we note that
a S-baryon is composed of three baby skyrmions with a spin carrier, so
we write

o 5 (ppnmp)

where we note that the configuration (pp) may give rise to a kaon and
(ppnm) gives rise to a nucleon. Thus we can write explicitly

o+ 5
1

!2
[(K+ nmp0) 1 ( pp0)]

o0 5
1

!2
[(K0nmp0) 1 (np0)]

So

mS1 2 mS0 5
1
2

[(mK1 2 mK0) 1 (mp 2 mn)]

5
1
2

[24 2 1.3] MeV 5
25.3

2
MeV 5 22.65 MeV (96)

which is to be compared with the experimental value, 23 MeV.
For mS0 2 mS2, we note that as we have no negatively charged nucleon,

we can write the configuration of S2 as (np2). Again the (pp) system here
also will not represent a negatively charged kaon K2, as this along with the
spin carrier would have created a negatively charged nucleon. Hence we write

o0
5

1

!2
[(K0 nm p0) 1 (np0)]

o2
5

1

!2
[(K0 nm p2) 1 (np2)]

so that

Table IV. Electromagnetic Mass Difference of Baryons

Mass Predicted value (MeV) Experimental value (MeV)
difference

mp 2 mn 21.3 21.3
mS1 2 mS0 22.65 23
mS0 2 mS2 24.6 24.8
mJ0 2 mJ2 26.4 26.4
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mS0 2 mS2 5
1
2

[(mp0 2 mp2) 1 (mp0 2 mp2)] 5 24.6 MeV (97)

which is in excellent agreement with the experimental value, 24.8 MeV.
A similar analysis suggests that J0, J2 may be depicted as a composite

of Sp with proper charge distribution. Indeed, J0 and J2 can be written as
a combination of states

J0 5 o+ p2 1 o2 p+ 1 o0 p0

J2 5 o2 p0 1 o0 p2

From this, we get

mJu 2 mJ2 5 (mS1 2 mS2) 1 (mp2 2 mp0) 1 (mS1 2 mS0)

1 (mp1 2 mp0) 1 (mS2 2 mS0) 1 (mS0 2 mS2)

1 (mp0 2 mp2)

5 (mS1 2 mS2) 1 (mp2 2 mp0) 1 (mS1 2 mS0)

Putting in the experimental values of the mass difference, we get

mJ0 2 mJ2 5 (27.9 1 4.6 2 3.1) MeV 5 26.4 MeV (98)

This value is also in excellent agreement with the experimental value, 26.4
6 0.6 MeV.

In the configuration of J0 (J2) we have taken only the charge mixing
effect taking into account the hybrid state of various charge combinations.
The values of mS1 2 mS0, mS1 2 mS2, and mS0 2 mS2 have been computed
from various configuration mixings as shown above and the probable combi-
nation of various charge states just represents a resonating effect depicting
a hybrid configuration.

6. SOME ASPECTS OF HADRONIC INTERACTIONS

According to this model of hadrons, right-handed and left-handed sys-
tems appear in a symmetric way and this symmetry is obtained from conformal
and space-time reflection; when we split the conformal spinors into a doublet
of Cartan semispinors, the above reflection symmetries can only be maintained
in strong interactions which involve only hadrons by the preservation of
handedness in the left- and right-handed systems representing particles and
antiparticles. This can be ensured through the rearrangement of the constit-
uents in such a way that the specific handedness for particle and antiparticle
systems is not altered. This implies that strong interactions involve composite
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systems of elementary spinors in the configuration of a hadron. The symmetry
principle is built into the very dynamics of strong interactions. In an earlier
paper [25] we showed that the rearrangement of constituents with specific
handedness for particle and antiparticle systems can remove all the inconsis-
tencies which crop up in the naive field-theoretic formalism and satisfy all
the canons of S-matrix theory. Also this satisfies the properties of duality.
Indeed, it has been shown that according to this formalism any strong interac-
tion without exchange of hypercharge can be explained in terms of pp
interaction, where the interacting pions are composite states of elementary
fermions in the structure of a hadron along with the rearrangement of the
constituents. This rearrangement of the constituents gives rise to a Regge
type of amplitude for the process. Again, for a hypercharge-changing process
we suggested that this may occur when a constituent pion contributing to
the internal quantum numbers is knocked out and taken by a hadron in such
a way that the handedness is not altered. This will ensure the conservation
of hypercharge.

In case an elementary spinorial system take part in an interaction in
Minkowski space, it is expected that the right–left symmetry as well as the
full internal symmetry which appear here as a manifestation of the composite
character of conformal spinors will be destroyed. This is the case for weak
interaction, where parity, charge conjugation, and isospin symmetry are not
maintained. Indeed, in this scheme all DS 5 0 semileptonic decay processes
follow from the decay of the muon in the structure of the hadron and this
explains the universality of the weak decay coupling constant. Indeed this is
the main motivation behind taking muonic leptons as the constituents of
hadrons. For example, b-decay can be formulated through the decay of m2

in the configuration

n 5 (m2 m+ p0 nm) → (nm m+ p0 nm) 1 e2 1 ne 5 p 1 e2 1 ne

Again it is suggested that semileptonic decays with .DS. 5 1 occur as a
result of the decay of the muon as well as the transition p0 → vacuum, where
the pionic constituent in the structure of the hadron contributes to the isospin
and strangeness of the hadron concerned. For example, the L → pe2 ne can
be interpreted as follows:

L 5 (m2 m+ p0 nm p0) → (nm m+ p0 nm) 1 e2 1 ne 1 (p0 → vacuum)

5 p 1 e2 1 ne

This explains nicely the selection rules .DI. 5 1/2, .DS. 5 1, and DS/DQ Þ
21 from the very dynamics of weak processes. Also, for nonleptonic decay
processes the .DI. 5 1/2 and .DS. 5 1 rules follow from the dynamics of
such processes. Indeed, such processes occur when the transition p0 →
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vacuum occurs and the residual system decays into relevant hadrons, which
can be treated nicely through the pole approximation method [26]. This
mechanism incorporates the above selection rules.

An interesting implication of this scheme is that since the internal sym-
metry algebra is generated from reflection group, parity conservation in strong
interaction is found to be a consequence of isospin conservation. Again
parity as well as charge conjugation violation in the weak interaction are
consequences of isospin violation in such processes. In case of electromag-
netic interactions, isospin violation is not accompanied by parity violation
due to the fact that this reflection group demands a disconnected gauge group
for such an interaction when the current is written in chiral form [13].

We have considered eight-component conformal spinors as the basic
ingredient of internal symmetry, so that when these split into two four-
component spinors in Minkowski space, these take part as the constituents
of hadrons in such a way that the members of the doublet take part in
particle and antiparticle configurations. Haag et al. [27] discussed the interplay
between the conformal symmetry, internal symmetry, and supersymmetry.
Daniel and Ktorides [28] adopted R4,2 as the underlying space of supersymme-
try and considered the supersymmetry algebra as the algebra of inhomogenous
rotation in the spinor space associated with R4,2 plus an additional number
of generators which can be readily interpreted as the elements of U(n) algebra.
In their attempt to construct the algebra, they derived the following relation
for the anticommutators of two conformal spinors:

{Qa, Qb} 5 hABC(gABC J )ab 1 hAB (gAB J )ab 1 h(b7J )ab

where gABC 5 bAbBbC , bA , s are the 8 3 8 matrices in C6 representing the
unit vectors in R4,2, b7 5 b0b1b2b3b5b6, and gAB 5 1–2 (bAbB 2 bBbA). The
parameters hABC, hAB, and h are mapped onto the group generators. hAB

effectively corresponds to JAB, the 15 generators of the conformal group
SU(2, 2). The parameter h is mapped onto a pseudoscalar generator which
is identified as the the g5 transformation and is responsible for the generation
for the internal symmetry. hABC corresponds to reflection (rotation 1 reflec-
tion). Daniel and Ktorides ignored this. However, as it has been shown that
the reflection may lead to U2 algebra, we note that the anticommutator of
conformal spinors leads to the algebra

S 5 g 3 C

where g is the internal symmetry algebra given by
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g 5 {(SU(2) 3 U(1))L % (SU(2) 3 U(1)R % U(1)}

where U(1) corresponds to strong reflection and C is the conformal algebra
given by SU(2, 2). Thus the maximal internal symmetry we may observe in
one interaction is given by g. Since conformal reflection gives rise to isospin
algebra SU(2) when for particle and antiparticle systems we have two indepen-
dent SU(2) algebras and hypercharge is given by U(1) algebra such that it
has opposite values for these systems, strong interaction symmetry SU(3) is
manifested when the mass splitting of hadrons is given by the symmetry
breaking SU(3) → SU(2) 3 U(1), and for the particle and antiparticle world
we can write it as (SU(2) 3 U(1))L and (SU(2) 3 U(1))R , respectively. Besides
this we can have a parity-violating interaction SU(2)L 3 U(1) [or SU(2)R 3
U(1)], which is the symmetry group of the electroweak interaction. Indeed
it has been shown in a recent paper that the topological properties of a
fermion help us to realize the SU(2)L 3 U(1) group structure for electroweak
unification, and weak interaction gauge bosons attain their masses, which
are of topological origin [29]. When fermions are written in chiral form, the
electromagnetic interaction is characterized by the disconnected gauge group
U(1)L 3 U(1)R instead of the group U(1) [30, 13]. When the full symmetry
group g is taken into account, this is found to be related to gravitation
given by the Einstein–Cartan action when the U(1) corresponding to strong
reflection gives rise to torsion, which appears as the contribution of quantum
gravity [31]. As the metric part of gravitation does not distinguish between
particles and antiparticles, the internal symmetry algebra {(SU(2) 3 U(1))L

% (SU(2) 3 U(1))R} is not disturbed by it. These are the only four possibilities
we have from the group structure g which respect CP invariance. This explains
why we have only four types of interactions in nature. Moreover, since
the algebra g 3 C gives rise to supersymmetry algebra S, we can have
supersymmetric phase only in the massless state [32] and the generation of
mass is associated with the generation of internal helicity, which distinguishes
bosons and fermions.

According to this model of hadrons, SU(3) symmetry is found to be the
maximal internal symmetry of hadrons and no flavors like charm, bottom,
and top can be accommodated in this picture. The interpretation of c and g
particles in terms of cc and bb bound states is not beyond ambiguity, as it
cannot explain consistently all the decay modes with their proper widths and
mass differences, as has been emphasized by many authors. The interpretation
of D-mesons as ‘charmed’ mesons is also in trouble with respect to experimen-
tally observed relations like G(D0) À G(D+). Order-of-magnitude disagree-
ments have been found between old predictions and new measurements of
c and g production at several collider facilities [33]. So we should search
for their origin in other heavy fermion models. Indeed, in a recent note [34]
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we showed that c, g as well as D-mesons can indeed be taken as bound
states of heavy fermions.

Another significant feature of this formalism is that baryon number-
nonconserving processes like proton decay are forbidden by the require-
ment of Lorentz invariance. In this scheme mesonic configurations are
distinguished from baryonic configurations by the fact that in the former
case two constituents appear with handedness opposite to each other, and
as such there is no intrinsic handedness or orientation bearing signature,
but for baryons, constituents appear with a specific handedness such that
this particular orientation is related to the baryon number. Since the
configuration scheme suggests CP and CPT symmetry as particles and
antiparticles appear on equal footing, Lorentz invariance in the external
space is manifested here through CPT invariance. Now this CPT symmetry
suggests that the orientation of the baryonic configurations must be pre-
served. In fact, if this orientation is destroyed in any process, particle–
antiparticle symmetry will be destroyed. Thus baryon number
conservation is found to be a consequence of CPT invariance and hence
of Lorentz invariance. So proton decay is forbidden in this scheme by
the requirement of Lorentz invariance. However, at extremely high tem-
perature a proton can disintegrate into its constituents through a Lorentz-
noninvariant interaction.

7. DISCUSSION

We have proposed a model of hadrons on the basis of the idea that
the internal space is anisotropic in nature when the constituents appear
as baby skyrmions, where the associated magnetic field gives rise to
strong statistical attraction and the internal symmetry is generated from
the reflection group. In this scheme strong interactions involve composite
systems of elementary spinors in the configuration of a hadron when
an elementary constituent can take part only in parity-violating weak
interaction. This prompted us to take leptons as the constituents of
hadrons. However, we have taken muonic leptons as the constituents
from the consideration that all semileptonic decays of hadrons can be
interpreted in terms of the muon decay, suggesting universality. Due to
the very tiny mass of electron, it may not be possible for the (ene) system
to form a bound state through statistical interaction as discussed here.
Again, despite e–m–t universality, since the t-lepton decays into hadrons
also, the configuration of t is likely to be different from e and m, and
very probably t itself represents a bound state. In view of this, muons
seem to be the only candidate for the constituents of a hadron. This also
explains the utility of the existence of muons in nature even though they
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behave as electrons in all interactions. In fact, a crucial question in
particle physics is why muons exist at all when they behave as electrons
in all aspects, and this gets a very good answer from our point of view
because unless muons existed, the universe would be devoid of hadrons.

Now we summarize some of the crucial predictions of the model.
1. The observation of strangeness 62 and isoscalar vector particles

f6 having mass . 1020 MeV. The corresponding pseudoscalar particles
D6 with 725 MeV have already been reported by several authors [21,
22]. Particles with similar quantum numbers should also occur in other
multiplets of mesons.

2. The mean square charge per constituent for p, S6, and J2 will be
1/5, 1/7, and 1/9 respectively, as is evident from the configurations. For
protons it is in agreement with the experimental value, 0.18.

3. Slight breakdown of m–e universality in ep and mp scattering as well
as vector and pseudoscalar mason decay [35–37]. This will happen due to
the fact that since muons (m+, nm, m2) have been taken to be the fundamental
constituents of hadrons, the basic interaction in high-energy ep and mp scatter-
ing will be effectively em and mm scattering, and hence a slight departure
from universality is expected.

4. The possible existence of a m2 p resonance [38].
5. From the configuration of a proton p 5 (p+ p0 nm) with Jnm 5 0, the

spin of the proton mainly arises from the orbital momentum of the constituents.
This prediction is in agreement with the recent results obtained from European
Muon Collaboration [39], as pointed out by Ellis and Karliner [40]. As the
configuration (p+ p0) gives rise to a kaon, the strange degrees of freedom
in a nucleon are nonvanishing in conformity with recent experimental
results [41].

6. At very high energy heavy-ion collisions, a large amount of muons
and neutrinos will be emitted due to the randomization of the direction
vectors. This may be responsible for the large amount of neutrinos observed
from Supernova ‘87.

7. Proton decay is forbidden by Lorentz invariance and at very high
energy, a proton will be dissociated into m+ 1 4nm through a Lorentz-nonin-
variant interaction.

8. CP violation of very small magnitude may occur in neutral baryons
because the present scheme suggests the existence of a component having
K0 (K0) in the configuration. For example, in case of a neutron (p0 p0 nm),
clustering like (K0 nm) is possible when the (p0 p0) system may appear as a
K0 state. The nonzero value of the dipole electric moment of the neutron can
thus be explained [42].

9. Finally, the most crucial prediction of the model is that at high
density, a system of nucleons will exhibit superfluidity. Indeed, the aniso-
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tropic feature of the internal space is the basic ingredient of superfluidity,
as has been much discussed in literature. This may have some significant
effect in neutron stars.
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